Carpal skeleton shows drastic developmental changes during embryogenesis. At this stage, the cartilaginous matrices appear and later form models of the limb bones. The purpose of this study was to investigate the morphometry of carpal bones in humans during embryological development. We obtained digitalized histological serial sections of 18 human embryos and early fetuses from the Institute of Anatomy in Paris. Surfdriver and MSC.Patran software were used for three-dimensional reconstruction and morphometry. There was a strong correlation between the volume of the carpal cartilaginous structure and the size of the embryos (P<0.001) and an exponential correlation between the carpal volume and the percentage of volume presented by the proximal carpal row (P=0.005). According to inertia parameters, the geometry of carpal cartilaginous structure, initially plane, becomes curved during embryogenesis. Carpal bones growth follows non-homothetic transformation. The innovations in embryo reconstruction serve as new tool for scientific investigation. A hypothesis of carpal development is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.