A significant problem in brain–computer interface (BCI) research is decoding — obtaining required information from very weak noisy electroencephalograph signals and extracting considerable information from limited data. Traditional intention decoding methods, which obtain information from induced or spontaneous brain activity, have shortcomings in terms of performance, computational expense and usage burden. Here, a new methodology called prediction error decoding was used for motor imagery (MI) detection and compared with direct intention decoding. Galvanic vestibular stimulation (GVS) was used to induce subliminal sensory feedback between the forehead and mastoids without any burden. Prediction errors were generated between the GVS-induced sensory feedback and the MI direction. The corresponding prediction error decoding of the front/back MI task was validated. A test decoding accuracy of 77.83–78.86% (median) was achieved during GVS for every 100[Formula: see text]ms interval. A nonzero weight parameter-based channel screening (WPS) method was proposed to select channels individually and commonly during GVS. When the WPS common-selected mode was compared with the WPS individual-selected mode and a classical channel selection method based on correlation coefficients (CCS), a satisfactory decoding performance of the selected channels was observed. The results indicated the positive impact of measuring common specific channels of the BCI.
Electroencephalogram (EEG) channel optimization can reduce redundant information and improve EEG decoding accuracy by selecting the most informative channels. This article aims to investigate the universality regarding EEG channel optimization in terms of how well the selected EEG channels can be generalized to different participants. In particular, this study proposes a sparse logistic regression (SLR)-based EEG channel optimization algorithm using a non-zero model parameter ranking method. The proposed channel optimization algorithm was evaluated in both individual analysis and group analysis using the raw EEG data, compared with the conventional channel selection method based on the correlation coefficients (CCS). The experimental results demonstrate that the SLR-based EEG channel optimization algorithm not only filters out most redundant channels (filters 75–96.9% of channels) with a 1.65–5.1% increase in decoding accuracy, but it can also achieve a satisfactory level of decoding accuracy in the group analysis by employing only a few (2–15) common EEG electrodes, even for different participants. The proposed channel optimization algorithm can realize better universality for EEG decoding, which can reduce the burden of EEG data acquisition and enhance the real-world application of EEG-based brain–computer interface (BCI).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.