As one of the most popular dimensionality reduction techniques, locality preserving projections (LPP) has been widely used in computer vision and pattern recognition. However, in practical applications, data is always corrupted by noises. For the corrupted data, samples from the same class may not be distributed in the nearest area, thus LPP may lose its effectiveness. In this paper, it is assumed that data is grossly corrupted and the noise matrix is sparse. Based on these assumptions, we propose a novel dimensionality reduction method, named low-rank preserving projections (LRPP) for image classification. LRPP learns a low-rank weight matrix by projecting the data on a low-dimensional subspace. We use the L21 norm as a sparse constraint on the noise matrix and the nuclear norm as a low-rank constraint on the weight matrix. LRPP keeps the global structure of the data during the dimensionality reduction procedure and the learned low rank weight matrix can reduce the disturbance of noises in the data. LRPP can learn a robust subspace from the corrupted data. To verify the performance of LRPP in image dimensionality reduction and classification, we compare LRPP with the state-of-the-art dimensionality reduction methods. The experimental results show the effectiveness and the feasibility of the proposed method with encouraging results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.