The pooling operation is used in graph classification tasks to leverage hierarchical structures preserved in data and reduce computational complexity. However, pooling shrinkage discards graph details, and existing pooling methods may lead to the loss of key classification features. In this work, we propose a residual convolutional graph neural network to tackle the problem of key classification features losing. Particularly, our contributions are threefold:(1) Different from existing methods, we propose a new strategy to calculate sorting values and verify their importance for graph classification. Our strategy does not only use features of simple nodes but also their neighbors for the accurate evaluation of its importance. ( 2) We design a new graph convolutional layer architecture with the residual connection. By feeding discarded features back into the network architecture, we reduce the probability of losing critical features for graph classification. (3) We propose a new method for graph-level representation. The messages for each node are aggregated separately, and then different attention levels are assigned to each node and merged into a graph-level representation to retain structural and critical information for classification. Our experimental resultsshow that our method leads to state-of-the-art results on multiple graph classification benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.