CpG repression in RNA viruses has been known for decades, but a reasonable explanation has not yet been proposed to explain this phenomenon. In this study, we calculated the CpG odds ratio of all RNA viruses that have available genome sequences and analyzed the correlation with their genome polarity, base composition, synonymous codon usage, phylogenetic relationship, and host. The results indicated that the viral base composition, synonymous codon usage and host selection were the dominant factors that determined the CpG bias in RNA viruses. CpG usage variation between the different viral groups was caused by different combinations of these pressures, which also differed from each other in strength. The consistent under-representation of CpG usage in −ssRNA viruses is determined predominantly by base composition, which may be a consequence of the U/A preferred mutation bias of −ssRNA viruses, whereas the CpG usage of +ssRNA viruses is affected greatly by their hosts. As a result, most +ssRNA viruses mimic their hosts' CpG usage. Unbiased CpG usage in dsRNA viruses is most likely a result of their dsRNA genome, which allows the viruses to escape from the host-driven CpG elimination pressure. CpG was under-represented in all reverse-transcribing viruses (RT viruses), suggesting that DNA methylation is an important factor affecting the CpG usage of retroviruses. However, vertebrate-infecting RT viruses may also suffer host' CpG elimination pressure that also acts on +ssRNA viruses, which results in further under-representation of CpG in the vertebrate-infecting RT viruses.
The structural characteristics and component differences of proanthocyanidins in brown and white cotton fibres were identified by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analyses. Proanthocyanidins in brown and white cotton fibres were found to contain mainly procyanidin (PC) and prodelphidin (PD) units with 2, 3-cis form (epigallocatechin and epicatechin). However, part of the proanthocyanidins in the white cotton fibres were modified by acylation and were constitutively different from the proanthocyanidins in brown cotton fibres. The relative amount of PD was similar to that of PC in white cotton fibres, while proanthocyanidins in brown cotton fibres consisted mainly of PD units with a relative ratio of 9:1. In brown cotton fibres, the proanthocyanidin monomeric composition was consistent with the expression profiles of proanthocyanidin synthase genes, suggesting that anthocyanidin reductase represented the major flow of the proanthocyanidin biosynthesis pathway. In addition, the structural characteristics and component differences of proanthocanidins in brown and white cotton fibres suggested that quinones, the oxidation products of proanthocyanidins, were the direct contributors to colour development in brown cotton fibre. This was demonstrated by vanillin-HCl staining and Borntrager's test. Collectively, these data demonstrated that the biosynthesis of proanthocyanidins is a crucial pigmentation process in brown cotton fibre, and that quinones may represent the main pigments contributing to formation of the the brown colour. This study revealed the molecular basis of pigmentation in brown cotton fibres, and provided important insights for genetic manipulation of pigment production in cotton fibres.
The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized.
BackgroudAs a result of changing consumer preferences, cotton (Gossypium Hirsutum L.) from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids.Experimental DesignFirstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3′H, and GhF3′5′H) were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC.ResultThe predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL). The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin) were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels.ConclusionsFlavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.