The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.
The magnitude of the optical sheet conductance of single-layer graphene is universal, and equal to e 2 /4ħ (where 2πħ = h (the Planck constant)). As the optical frequency decreases, the conductivity decreases. However, at some frequency in the THz range, the conductivity increases again, eventually reaching the DC value, where the magnitude of the DC sheet conductance generally displays a sample-and doping-dependent value between ~e 2 /h and 100 e 2 /h. Thus, the THz range is predicted to be a non-trivial region of the spectrum for electron transport in graphene, and may have interesting technological applications. In this paper, we present the first frequency domain measurements of the absolute value of multilayer graphene (MLG) and single-layer graphene (SLG) sheet conductivity and transparency from DC to 1 THz, and establish a firm foundation for future THz applications of graphene.
We present a simple, low-cost, large area, and contamination-free monolayer graphene field-effect transistor for liquid-gated sensing applications. The graphene surface does not require any photoresist including the commonly used polymethylmethacrylate, thus avoiding possible contamination and mobility degradation. We also examine the effects of different etching solutions and concentrations on the Dirac point of graphene. With optimal device fabrication recipe, we demonstrate the device's capability to sense different KCl concentrations and pH values under liquid gating configuration. Additionally, using polydimethylsiloxane as substrates holds an advantage of enabling simple integration between microfluidic systems and graphene for chemical and biological sensor applications. V
Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.