Cilk (pronounced "silk") is a C-based runtime system for multithreaded parallel programming. In this paper, we document the efficiency of the Cilk work-stealing scheduler, both empirically and analytically. We show that on real and synthetic applications, the "work" and "critical-path length" of a Cilk computation can be used to model performance accurately. Consequently, a Cilk programmer can focus on reducing the computation' s work and critical-path length, insulated from load balancing and other runtime scheduling issues. We also prove that for the class of "fully strict" (well-structured) programs, the Cilk scheduler achieves space, time, and communication bounds all within a constant factor of optimal.The Cilk runtime system currently runs on the Connection Machine CM5 MPP, the Intel Paragon MPP, the Sun Sparcstation SMP, and the Cilk-NOW network of workstations. Applications written in Cilk include protein folding, graphic rendering, backtrack search, and the ?Socrates chess program, which won second prize in the 1995 World Computer Chess Championship.
Cilk (pronounced "silk") is a C-based runtime system for multithreaded parallel programming.In this paper, we document the efficiency of the Cilk work-stealing scheduler, both empirically and analytically. We show that on real and synthetic applications, the "work" and "critical path" of a Cilk computation can be used to accurately model performance. Consequently, a Cilk programmer can focus on reducing the work and critical path of his computation, insulated from load balancing and other rtmtime scheduling issues. We also prove that for the class of "fully strict" (well-structured) programs, the Cilk scheduler achieves space, time, and communication bounds all within a constant factor of optimal. The Cilk rmrtime system currently runs on the Connection Machine CM5 MPP, the Intel Paragon MPP, the Silicon Graphics Power Challenge SMP, and the MIT Phish network of workstations.Applications written in Cilk include protein folding, graphic rendering, backtrack search, and the *Socrates chess program, which won third prize in the
Cilk (pronounced "silk") is a C-based runtime system for multithreaded parallel programming.In this paper, we document the efficiency of the Cilk work-stealing scheduler, both empirically and analytically. We show that on real and synthetic applications, the "work" and "critical path" of a Cilk computation can be used to accurately model performance. Consequently, a Cilk programmer can focus on reducing the work and critical path of his computation, insulated from load balancing and other rtmtime scheduling issues. We also prove that for the class of "fully strict" (well-structured) programs, the Cilk scheduler achieves space, time, and communication bounds all within a constant factor of optimal. The Cilk rmrtime system currently runs on the Connection Machine CM5 MPP, the Intel Paragon MPP, the Silicon Graphics Power Challenge SMP, and the MIT Phish network of workstations.Applications written in Cilk include protein folding, graphic rendering, backtrack search, and the *Socrates chess program, which won third prize in the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.