Objective The expression of bone morphogenetic proteins (BMPs) is enhanced in human atherosclerotic and calcific vascular lesions. While genetic gain- and loss-of-function experiments in mice have supported a causal role of BMP signaling in atherosclerosis and vascular calcification, it remains uncertain whether BMP signaling might be targeted pharmacologically to ameliorate both of these processes. Methods and Results We tested the impact of pharmacologic BMP inhibition upon atherosclerosis and calcification in low density lipoprotein receptor-deficient (LDLR−/−) mice. LDLR−/− mice fed a high-fat diet developed abundant vascular calcification within twenty weeks. Prolonged treatment of LDLR−/− mice with the small molecule BMP inhibitor LDN-193189 was well-tolerated and potently inhibited development of atheroma, as well as associated vascular inflammation, osteogenic activity, and calcification. Administration of recombinant BMP antagonist ALK3-Fc replicated the anti-atherosclerotic and anti-inflammatory effects of LDN-193189. Treatment of human aortic endothelial cells with LDN-193189 or ALK3-Fc abrogated the production of reactive oxygen species (ROS) induced by oxidized LDL, a known early event in atherogenesis. Unexpectedly, treatment of mice with LDN-193189 lowered LDL serum cholesterol by 35% and markedly decreased hepatosteatosis without inhibiting HMG-CoA reductase activity. Treatment with BMP2 increased, whereas LDN-193189 or ALK3-Fc inhibited apolipoprotein B100 secretion in HepG2 cells, suggesting that BMP signaling contributes to the regulation of cholesterol biosynthesis. Conclusions These results definitively implicate BMP signaling in atherosclerosis and calcification, while uncovering a previously unidentified role for BMP signaling in LDL cholesterol metabolism. BMP inhibition may be helpful in the treatment of atherosclerosis and associated vascular calcification.
Stromal-epithelial interactions play a central role in development and tumorigenesis. Bone morphogenetic protein (BMP) signaling in the intestine is involved in both of these processes. Inactivation of BMP pathway genes in the epithelium is known to cause intestinal polyposis. However, the role of the intestinal stroma in polyp initiation is incompletely understood. We observed that conditional inactivation of the BMP type II receptor (BMPRII) in the stroma leads to epithelial hyperplasia throughout the colon with increased epithelial cell proliferation. Mutant mice developed rectal bleeding and hamartomatous polyps in the colorectum. The polyps demonstrated increased proliferation of epithelial and mesenchymal cells in the mucosa with an expansion of the myofibroblast cell population. These results demonstrate that genetic mutations altering the BMP signaling pathway in the stromal microenvironment can lead to epithelial tumors in the colon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.