Humans and animals control their walking rhythms to maintain motion in a variable environment. The neural mechanism for controlling rhythm has been investigated in many studies using mechanical and electrical stimulation. However, quantitative evaluation of rhythm variation in response to perturbation at various timings has rarely been investigated. Such a characteristic of rhythm is described by the phase response curve (PRC). Dynamical simulations of human skeletal models with changing walking rhythms (phase reset) described a relation between the effective phase reset on stability and PRC, and phase reset around touch-down was shown to improve stability. A PRC of human walking was estimated by pulling the swing leg, but such perturbations hardly influenced the stance leg, so the relation between the PRC and walking events was difficult to discuss. This research thus examines human response to variations in floor velocity. Such perturbation yields another problem, in that the swing leg is indirectly (and weakly) perturbed, so the precision of PRC decreases. To solve this problem, this research adopts the weighted spike-triggered average (WSTA) method. In the WSTA method, a sequential pulsed perturbation is used for stimulation. This is in contrast with the conventional impulse method, which applies an intermittent impulsive perturbation. The WSTA method can be used to analyze responses to a large number of perturbations for each sequence. In the experiment, perturbations are applied to walking subjects by rapidly accelerating and decelerating a treadmill belt, and measured data are analyzed by the WSTA and impulse methods. The PRC obtained by the WSTA method had clear and stable waveforms with a higher temporal resolution than those obtained by the impulse method. By investigation of the rhythm transition for each phase of walking using the obtained PRC, a rhythm change that extends the touch-down and mid-single support phases is found to occur.
This paper presents an approach to implement a sliding-mode position controller to a plant equipped with a nonsmooth actuator. The actuator is modeled as a set-valued function from the control input and the velocity to the actuator force, which is motivated by quasistatic characteristics of hydraulic actuators shown in a previous study. The implementation of the sliding-mode controller is performed with the implicit discretization of the nominal plant model and the controller, which copes with the difficulties caused by set-valuedness, such as numerical chattering. Stability analyses both in the continuous-time and discrete-time domains are presented. Simulation results illustrate the theoretical findings.
Recently, the wild boar damage has been increasingly serious in "Bingo Sports Park". To take effective measures, it is necessary to understand where the damage tends to be caused. This study aims at identifying the main factors on wild boar damage by using logistic regression analysis and creating the estimation map of wild boar damage based on the result. Results shows that the wild boars tend to cause more damage in areas with more natural land cover and closer to roads and valleys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.