Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.Electronic supplementary materialThe online version of this article (doi:10.1007/s13280-016-0770-0) contains supplementary material, which is available to authorized users.
The Tibetan Plateau, a unique cold and dry region recognized as the Earth's third pole, is primarily composed of alpine grasslands (>60 %). While a warming climate in the plateau is being recorded, phenology of alpine grasslands and its climatic dependencies are less investigated. This study tests the feasibility of the frequently observed Moderate Resolution Imaging Spectroradiometer (MODIS) time series (500 m, 8 days) in examining alpine phenology in the plateau. A set of phenological metrics are extracted from the MODIS Normalized Difference Vegetation Index (NDVI) series in each year, 2000-2010. A nonparametric Mann-Kendall trend analysis is performed to find the trends of these phenological metrics, which are then linked to monthly climatic records in the growing season. Opposite trends of phenological change are observed between the east and west of the plateau, with delayed start of season, peak date, and end of season in the west and advanced phenophases in the east. The correlation analysis indicates that precipitation, with a decreasing trend in the west and increasing trend in the east, may serve as the primary driver of the onset and peak dates of greenness. Temperature increases all over the plateau. While the delay of the end of season in the west could be related to higher late-season temperature, its advance in the east needs further investigation in this unique cold region. This study demonstrates that frequent satellite observations are able to extract phenological features of alpine grasslands and to provide spatiotemporally detailed base information for long-term monitoring on the plateau under rapid climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.