An Agent-as-a-Service (AaaS)-based geospatial service aggregation is proposed to build a more efficient, robust and intelligent geospatial service system in the Cloud for flood emergency response. It involves an AaaS infrastructure, encompassing the mechanisms and algorithms for geospatial Web Processing Service (WPS) generation, geoprocessing and aggregation. The method has the following advantages: 1) it allows separately hosted services and data to work together, avoiding transfers of large volumes of spatial data over the network; 2) it enriches geospatial service resources in the distributed environment by utilizing the agent cloning, migration and service regeneration capabilities of the AaaS, solving issues associated with lack of geospatial services to a certain extent; 3) it enables the migration of services to target nodes to finish a task, strengthening decentralization and enhancing the robustness of geospatial service aggregation; and 4) it helps domain experts and authorities solve interdisciplinary emergency issues using various Agent-generated geospatial services.
Real-time estimation of crop progress stages is critical to the US agricultural economy and decision making. In this paper, a Hidden Markov Model (HMM) based method combining multisource features has been presented. The multisource features include mean Normalized Difference Vegetation Index (NDVI), fractal dimension, and Accumulated Growing Degree Days (AGDDs). In our case, these features are global variable, and measured in the state-level. Moreover, global feature in each Day of Year (DOY) would be impacted by multiple progress stages. Therefore, a mixture model is employed to model the observation probability distribution with all possible stage components. Then, a filtering based algorithm is utilized to estimate the proportion of each progress stage in the real-time. Experiments are conducted in the states of Iowa, Illinois and Nebraska in the USA, and our results are assessed and validated by the Crop Progress Reports (CPRs) of the National Agricultural Statistics Service (NASS). Finally, a quantitative comparison and analysis between our method and spectral pixel-wise based methods is presented. The results demonstrate the feasibility of the proposed method for the estimation of corn progress stages. The proposed method could be used as a
OPEN ACCESSRemote Sens. 2013, 5 1735 supplementary tool in aid of field survey. Moreover, it also can be used to establish the progress stage estimation model for different types of crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.