We present the 1.06 Gb sequenced genome of Gastrodia elata, an obligate mycoheterotrophic plant, which contains 18,969 protein-coding genes. Many genes conserved in other plant species have been deleted from the G. elata genome, including most of those for photosynthesis. Additional evidence of the influence of genome plasticity in the adaptation of this mycoheterotrophic lifestyle is evident in the large number of gene families that are expanded in G. elata, including glycoside hydrolases and urease that likely facilitate the digestion of hyphae are expanded, as are genes associated with strigolactone signaling, and ATPases that may contribute to the atypical energy metabolism. We also find that the plastid genome of G. elata is markedly smaller than that of green plant species while its mitochondrial genome is one of the largest observed to date. Our report establishes a foundation for studying adaptation to a mycoheterotrophic lifestyle.
The situation of drug resistance has become more complicated due to the scarcity of plant resistance genes, and overcoming this challenge is imperative. Isatis indigotica has been used for the treatment of wounds, viral infections, and inflammation for centuries. Antimicrobial peptides (AMPs) are found in all classes of life ranging from prokaryotes to eukaryotes. To identify AMPs, I. indigotica was explored using a novel, sensitive, and high-throughput Bacillus subtilis screening system. We found that IiR515 and IiR915 exhibited significant antimicrobial activities against a variety of bacterial (Xanthomonas oryzae, Ralstonia solanacearum, Clavibacter michiganensis, and C. fangii) and fungal (Phytophthora capsici and Botrytis cinerea) pathogens. Scanning electron microscope and cytometric analysis revealed the possible mechanism of these peptides, which was to target and disrupt the bacterial cell membrane. This model was also supported by membrane fluidity and electrical potential analyses. Hemolytic activity assays revealed that these peptides may act as a potential source for clinical medicine development. In conclusion, the plant-derived novel AMPs IiR515 and IiR915 are effective biocontrol agents and can be used as raw materials in the drug discovery field.
Artemisia annua, Artemisia argyi, Artemisia absinthium, Artemisia leucophylla and Artemisia lavandulaefolia are five herbal species of Artemisia usually misidentified, adulterated or substituted in commerce. Using light microscopy, scanning electron microscopy and microscopic quantitative analysis, the transverse sections, morphological, powder and quantitative microscopic features of glandular trichome density and area were observed for correct authentication. The results indicated that microscopic characteristics such as the distribution of fiber bundles in the vascular bundle of the main vein, the shape of xylem, the density and type of non-glandular trichomes, the morphology of T-shaped non-glandular trichomes, the type of calcium oxalate crystals, and the number and size of glandular trichomes can be used to authenticate the five Artemisia crude herbs. Differences in the morphology and density of glandular and non-glandular trichomes are key features for the identification of five Artemisia species. Therefore, our study provides a more comprehensive microscopic identification diagram and additional microscopic evidence for the five Artemisia species.
HighlightsThis study provides a more comprehensive microscopic identification diagram and statistical information on the glandular trichome density and area for accurate authentication of five Artemisia herbs using light microscopy, scanning electron microscopy and microscopic quantitative analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.