The interaction of escaping upper atmosphere of a hydrogen rich non-magnetized analog of HD209458b with a stellar wind of its host G-type star at different orbital distances is simulated with a 2D axisymmetric multi-fluid hydrodynamic model. A realistic sun-like spectrum of XUV radiation which ionizes and heats the planetary atmosphere, hydrogen photo-chemistry, as well as stellar-planetary tidal interaction are taken into account to generate self-consistently an atmospheric hydrodynamic outflow. Two different regimes of the planetary and stellar winds interaction have been modelled. These are: 1) the "captured by the star" regime, when the tidal force and pressure gradient drive the planetary material beyond the Roche lobe towards the star, and 2) the "blown by the wind" regime, when sufficiently strong stellar wind confines the escaping planetary atmosphere and channels it into the tail. The model simulates in details the hydrodynamic interaction between the planetary atoms, protons and the stellar wind, as well as the production of energetic neutral atoms (ENAs) around the planet due to charge-exchange between planetary atoms and stellar protons. The revealed location and shape of the ENA cloud either as a paraboloid shell between ionopause and bowshock (for the "blown by the wind" regime), or a turbulent layer at the contact boundary between the planetary stream and stellar wind (for the "captured by the star" regime) are of importance for the interpretation of Lyα absorption features in exoplanetary transit spectra and characterization of the plasma environments.
The enormous increase of Raman signal in the vicinity of metal nanoparticles allows surface-enhanced Raman spectroscopy (SERS) to be employed for label-free detection of substances at extremely low concentrations. However, the ultimate potential of label-free SERS to identify pharmaceutical compounds at low concentrations, especially in relation to biofluid sensing, is far from being fully realized. Opioids are a particular challenge for rapid clinical identification because their molecular structural similarities prevent their differentiation with immunolabeling approaches. In this paper, we report a new method called quantitative label-free SERS (QLF-SERS) which involves the formation of halide-conjugated gold nanoclusters trapping the analyte of interest near the SERS hot spots, and we demonstrate that it yields a 105 fold improvement in the detection limit over previously reported results for the entire class of clinically-relevant opioids and their metabolites. Measurements of opioid concentrations in multi-component mixtures are also demonstrated. QLF-SERS has comparable detection limits as currently existing laboratory urine drug testing techniques but is significantly faster and inexpensive and, therefore, could be easily adapted as part of a rapid clinical laboratory routine.
Pancreatic cancers are usually detected at an advanced stage and have poor prognosis. About one fifth of these arise from pancreatic cystic lesions. Yet not all lesions are precancerous, and imaging tools lack adequate accuracy for distinguishing precancerous from benign cysts. Therefore, decisions on surgical resection usually rely on endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). Unfortunately, cyst fluid often contains few cells, and fluid chemical analysis lacks accuracy, resulting in dire consequences, including unnecessary pancreatic surgery for benign cysts and the development of cancer. Here, we report an optical spectroscopic technique, based on a spatial gating fibre-optic probe, that predicts the malignant potential of pancreatic cystic lesions during routine diagnostic EUS-FNA procedures. In a double-blind prospective study in 25 patients, with 14 cysts measured in vivo and 13 postoperatively, the technique achieved an overall accuracy of 95%, with a 95%confidence interval of 78–99%, in cysts with definitive diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.