H.266/Versatile Video Coding (VVC) is the latest international video coding standard to encode ultra-high-definition video effectively. The quadtree with nested multi-type tree (QT-MTT) structure provides various sizes of coding tree partitioning and allows the nested binary tree (BT) split and ternary tree (TT) split at each QT level. Furthermore, numerous advanced coding tools are equipped in the H.266/VVC encoder. However, the encoding time increases tremendously. Previous researches regarding the fast coding algorithm of H.266/VVC seldom mention perceptual redundancy. This paper utilizes the human vision model of just noticeable difference to extract the visually distinguishable pixels that may affect the visual perception. We observe that the distributions acquired by the horizontal and vertical projections of visually distinguishable pixels within the coding unit are related to their corresponding MTT splitting modes. Therefore, the distributions representing the perceptual information of human vision are used to be the input features of machine learning. Fast MTT decision determined by the random forest models of machine learning is proposed to quickly select the partition for intra coding. Experimental results demonstrate that the proposed method can effectively accelerate intra coding process while maintaining good bitrate and video quality based on the properties of the visual perception. The proposed algorithm provides better performance than the previous work.
The latest international video coding standard, H.266/Versatile Video Coding (VVC), supports high-definition videos, with resolutions from 4 K to 8 K or even larger. It offers a higher compression ratio than its predecessor, H.265/High Efficiency Video Coding (HEVC). In addition to the quadtree partition structure of H.265/HEVC, the nested multi-type tree (MTT) structure of H.266/VVC provides more diverse splits through binary and ternary trees. It also includes many new coding tools, which tremendously increases the encoding complexity. This paper proposes a fast intra coding algorithm for H.266/VVC based on visual perception analysis. The algorithm applies the factor of average background luminance for just-noticeable-distortion to identify the visually distinguishable (VD) pixels within a coding unit (CU). We propose calculating the variances of the numbers of VD pixels in various MTT splits of a CU. Intra sub-partitions and matrix weighted intra prediction are turned off conditionally based on the variance of the four variances for MTT splits and a thresholding criterion. The fast horizontal/vertical splitting decisions for binary and ternary trees are proposed by utilizing random forest classifiers of machine learning techniques, which use the information of VD pixels and the quantization parameter. Experimental results show that the proposed algorithm achieves around 47.26% encoding time reduction with a Bjøntegaard Delta Bitrate (BDBR) of 1.535% on average under the All Intra configuration. Overall, this algorithm can significantly speed up H.266/VVC intra coding and outperform previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.