The interference fit has been widely used for torque transmission and assembly stability in the modern machinery industry. The form error of cylindrical feature is propagated during the interference fit of shaft-hole assembly, which causes the translation and rotation of following structures. Therefore, the overall precision variation is difficult to be predicted. In this paper, an error computational model of interference fit stage is proposed to represent the form error propagation of cylindrical features in the shaft-hole assembly. The characteristic parameter of form error is obtained by the minimum zone cylinder method and integrated into the small displacement torsor. The deformation behavior of interference fit with form error is described as a weakening propagation of error. An interference fit error propagation coefficient is introduced to quantify the phenomenon of weakening propagation of error, which depends on particular fit conditions such as materials, sizes, and interference range of parts. The error computational model for interference fit with form feature is deduced by using the Jacobian-Torsor theory. The characteristic of deformation flexibility in the interference fit is well considered comparing to the simple rigidity analysis in the traditional Jacobian-Torsor model. An error analysis of a shaft-hole structure deciding the symmetry and sensibility performance in the servo valve is conducted to verify the applicability. The cylindrical feature error and deformation during the interference fit are included. The results show that the new error model may represent characteristics of interference fit error propagation with form feature and has a higher reliability than the traditional error models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.