Degree of ionization (DI) in matrix-assisted laser desorption ionization (MALDI) was measured for five peptides using α-cyano-4-hydroxycinnanmic acid (CHCA) as the matrix. DIs were low 10(-4) for peptides and 10(-7) for CHCA. Total number of ions (i.e., peptide plus matrix) was the same regardless of peptides and their concentration, setting the number of gas-phase ions generated from a pure matrix as the upper limit to that of peptide ions. Positively charged cluster ions were too weak to support the ion formation via such ions. The total number of gas-phase ions generated by MALDI, and that from pure CHCA, was unaffected by the laser pulse energy, invalidating laser-induced ionization of matrix molecules as the mechanism for the primary ion formation. Instead, the excitation of matrix by laser is simply a way of supplying thermal energy to the sample. Accepting strong Coulomb attraction felt by cations in a solid sample, we propose three hypotheses for gas-phase peptide ion formation. In Hypothesis 1, they originate from the dielectrically screened peptide ions in the sample. In Hypothesis 2, the preformed peptide ions are released as part of neutral ion pairs, which generate gas-phase peptide ions via reaction with matrix-derived cations. In Hypothesis 3, neutral peptides released by ablation get protonated via reaction with matrix-derived cations.
OBJECTIVES
We aimed to validate a multi–sensor‐based kiosk (automatically measured Short Physical Performance Battery [eSPPB] kiosk) that can perform automated measurement of the SPPB.
DESIGN
Prospective, cross‐sectional study.
SETTING
Rehabilitation clinic of a tertiary‐care hospital.
PARTICIPANTS
Ambulatory outpatients, aged 65 years or older (N = 40).
MEASUREMENTS
The eSPPB kiosk was developed to measure the three components of the SPPB: standing balance, gait speed, and chair stand test with embedded sensors and algorithms. Correlations between the total and component‐specific scores of the eSPPB and manually measured SPPB (mSPPB), assessed by a physical therapist, were assessed. Further, correlations between SPPB parameters and geriatric functional measures were also evaluated.
RESULTS
This study included 40 participants with a mean age of 74.4 ± 6.5 years, a mean total eSPPB score of 10.1 ± 2.1, and a mean total mSPPB score of 10.2 ± 2.1. The intraclass correlation coefficient between the eSPPB and mSPPB total score was 0.97 (P < .001), and the κ agreement was 0.79 (P < .001). The intraclass coefficients between the components of eSPPB and mSPPB were 0.77 (P < .001), 0.88 (P < .001), and 0.99 (P < .001) for standing balance, gait speed, and chair stand test, respectively.
CONCLUSION
The newly developed kiosk might be a viable and efficient method for performing the SPPB in older adults. J Am Geriatr Soc 67:2605–2609, 2019
Preformed ion emission is the main assumption in one of the prevailing theories for peptide and protein ion formation in matrix-assisted laser desorption ionization (MALDI). Since salts are in preformed ion forms in the matrix-analyte mixture, they are ideal systems to study the characteristics of preformed ion emission. In this work, a reliable method to measure the ion yield (IY) in MALDI was developed and used for a solid salt benzyltriphenylphosphonium chloride and two room-temperature ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate. IY for the matrix (α-cyano-4-hydroxycinnamic acid, CHCA) was also measured. Taking 1 pmol salts in 25 nmol CHCA as examples, IYs for three salts were similar, (4-8)×10−4 , and those for CHCA were (0.8-1.2)×10 −7. Even though IYs for the salts and CHCA remained virtually constant at low analyte concentration, they decreased as the salt concentrations increased. Two models, Model 1 and Model 2, were proposed to explain low IYs for the salts and the concentration dependences. Both models are based on the fact that the ion-pair formation equilibrium is highly shifted toward the neutral ion pair. In Model 1, the gas-phase analyte cations were proposed to originate from the same cations in the solid that were dielectrically screened from counter anions by matrix neutrals. In Model 2, preformed ions were assumed to be released from the solid sample in the form of neutral ion pairs and the anions in the ion pairs were assumed to be eliminated via reactions with matrix-derived cations.
Machinery operating in a nonstationary mode generates a signature that at each instant of time has a distinct frequency. A Time-frequency domain representation is needed to characterize such a signature. Pseudo Wigner–Ville distribution is ideally suited for portraying a nonstationary signal in the time-frequency domain and is carried out by adapting the fast Fourier transform algorithm. The important parameters affecting the pseudo Wigner–Ville distribution are discussed and sensitivity analyses are also performed. Practical examples of an actual transient signal are used to illustrate its dynamic features jointly in time and frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.