The development of infrared optical materials is always closely related to the research and exploration of material science. The infrared optical domes bears shock and produces stress when the infrared optical domes mounted on the missile moving at a high speed is shocked by high temperature. According to aerodynamics theory and thermo shock theory, the surge current will be transferred to optical parts through holding up layer and warms the surface of optical parts when infrared optical parts are shocked by high temperature. A compress stress is formed on the hot external surface of optical parts forms and a tension stress is formed on the internal surface or optical parts under the circumstance of the edge of optical parts being fixed. The windows of optical parts become curvature radius of lens with the function of pressure difference which can cause aberration change. The brittle fracture of material will be caused if peak stress is beyond the strength which is permitted for infrared materials. Therefore, limits to design of windows thickness is proposed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.