With the rapid development of the Internet, several emerging technologies are adopted to construct fancy, interactive, and userfriendly websites. Among these technologies, HTML5 is a popular one and is widely used in establishing modern sites. However, the security issues in the new web technologies are also raised and are worthy of investigation. For vulnerability investigation, many previous studies used fuzzing and focused on generation-based approaches to produce test cases for fuzzing; however, these methods require a significant amount of knowledge and mental efforts to develop test patterns for generating test cases. To decrease the entry barrier of conducting fuzzing, in this study, we propose a test pattern generation algorithm based on the concept of finite state machines. We apply graph analysis techniques to extract paths from finite state machines and use these paths to construct test patterns automatically. According to the proposal, fuzzing can be completed through inputting a regular expression corresponding to the test target. To evaluate the performance of our proposal, we conduct an experiment in identifying vulnerabilities of the input attributes in HTML5. According to the results, our approach is not only efficient but also effective for identifying weak validators in HTML5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.