Elastic system fibers consist of microfibrils and tropoelastin. During development, microfibrils act as a template on which tropoelastin is deposited. Fibrillin-1 is the major component of microfibrils. It is not clear whether elastic fiber-associated molecules, such as fibulins, contribute to tropoelastin deposition. Among the fibulin family, fibulin-2, -4 and -5 are capable of binding to tropoelastin and fibrillin-1. In the present study, we used the RNA interference (RNAi) technique to establish individual gene-specific knockdown of fibulin-2, -4 and -5 in elastin-producing cells (human gingival fibroblasts; HGF). We then examined the extracellular deposition of tropoelastin using immunofluorescence. RNAi-mediated down-regulation of fibulin-4 and -5 was responsible for the diminution of tropoelastin deposition. Suppression of fibulin-5 appeared to inhibit the formation of fibrillin-1 microfibrils, while that of fibulin-4 did not. Similar results to those for HGF were obtained with human dermal fibroblasts. These results suggest that fibulin-4 and -5 may be associated in different ways with the extracellular deposition of tropoelastin during elastic fiber formation in elastin-producing cells in culture.
The periodontal ligament (PDL) contains oxytalan fibers as well as collagen fibers, which helps it to withstand the mechanical stress to which it is constantly exposed. The oxytalan fibers are produced by PDL fibroblasts. However, the arrangement of PDL fibroblasts and the orientation of oxytalan fibers relative to the fibroblast cell axis have not been investigated under the condition of mechanical stress. We hypothesized that such stress would alter the arrangement and orientation of these cells and their oxytalan fibers. The aim of this study was to evaluate the effects of stretching strain on PDL fibroblasts, focusing on the cellular arrangement and orientation of oxytalan fibers relative to the long cell axis in cell/matrix layers by staining the major component of the fibers, fibrillin-1. The angle between the long cell axis and the oxytalan fibers was approximately 70 degrees under both non-stretching and stretching conditions. Moreover, stretching induced the rearrangement of the cells. This is the first study to demonstrate that stretching induces the rearrangement of the PDL fibroblasts without altering the angle between the long cell axis and the oxytalan fibers. These results may reflect the orientation of oxytalan fibers in the PDL under the condition of mechanical stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.