This paper studies an approach to gait based human identification via similarity learning by deep convolutional neural networks (CNNs). With a pretty small group of labeled multi-view human walking videos, we can train deep networks to recognize the most discriminative changes of gait patterns which suggest the change of human identity. To the best of our knowledge, this is the first work based on deep CNNs for gait recognition in the literature. Here, we provide an extensive empirical evaluation in terms of various scenarios, namely, cross-view and cross-walking-condition, with different preprocessing approaches and network architectures. The method is first evaluated on the challenging CASIA-B dataset in terms of cross-view gait recognition. Experimental results show that it outperforms the previous state-of-the-art methods by a significant margin. In particular, our method shows advantages when the cross-view angle is large, i.e., no less than 36 degree. And the average recognition rate can reach 94 percent, much better than the previous best result (less than 65 percent). The method is further evaluated on the OU-ISIR gait dataset to test its generalization ability to larger data. OU-ISIR is currently the largest dataset available in the literature for gait recognition, with 4,007 subjects. On this dataset, the average accuracy of our method under identical view conditions is above 98 percent, and the one for cross-view scenarios is above 91 percent. Finally, the method also performs the best on the USF gait dataset, whose gait sequences are imaged in a real outdoor scene. These results show great potential of this method for practical applications.
While feedforward deep convolutional neural networks (CNNs) have been a great success in computer vision, itis important to note that the human visual cortex generally contains more feedback than feedforward connections. In this paper, we will briefly introduce the background of feedbacks in the human visual cortex, which motivates us to develop a computational feedback mechanism in deep neural networks. In addition to the feedforward inference in traditional neural networks, a feedback loop is introduced to infer the activation status of hidden layer neurons according to the "goal" of the network, e.g., high-level semantic labels. We analogize this mechanism as "Look and Think Twice." The feedback networks help better visualize and understand how deep neural networks work, and capture visual attention on expected objects, even in images with cluttered background and multiple objects. Experiments on ImageNet dataset demonstrate its effectiveness in solving tasks such as image classification and object localization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.