This project studied several popular localization algorithms on iPhone and, according to the demands, specifically designed it to improve healthcare IT system in hospitals. The challenge of this project was to realize the different localization systems on iPhone and to make balance between its response time and localization accuracy. We implemented three popular localization algorithms, namely nearest neighbor (NN), K-nearest neighbor (KNN), and probability phase, and we compared their performance on iPhone. Furthermore, we also implemented a real-time localization system using the ZigBee technology on iPhone. Thus, the whole system could realize not only self-localization but also others-localization. To fulfill the healthcare needs, we developed an application, which can be used to improve the hospital IT, system. The whole project included three phases. The first phase was to localize iPhone's position using the received WiFi signal by iPhone, compare and optimize their performances. During the second phase, we implemented a ZigBee RFID localization system and combined it with the WiFi system. Finally, we combined new features of the system with a healthcare IT system. We believe that this application on iPhone can be a useful and advanced application in hospitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.