As the most common examination tool in medical practice, chest radiography has important clinical value in the diagnosis of disease. Thus, the automatic detection of chest disease based on chest radiography has become one of the hot topics in medical imaging research. Based on the clinical applications, the study conducts a comprehensive survey on computer-aided detection (CAD) systems, and especially focuses on the artificial intelligence technology applied in chest radiography. The paper presents several common chest X-ray datasets and briefly introduces general image preprocessing procedures, such as contrast enhancement and segmentation, and bone suppression techniques that are applied to chest radiography. Then, the CAD system in the detection of specific disease (pulmonary nodules, tuberculosis, and interstitial lung diseases) and multiple diseases is described, focusing on the basic principles of the algorithm, the data used in the study, the evaluation measures, and the results. Finally, the paper summarizes the CAD system in chest radiography based on artificial intelligence and discusses the existing problems and trends.
Background
Adipose tissue-derived mesenchymal stem cells (ADSCs) are promising candidates for regenerative medicine. However, long-term in vitro passaging leads to stemness loss and cell senescence of ADSCs, resulting in failure of ADSC-based therapy.
Methods
In this study, ADSCs were treated with low dose of antioxidants (reduced glutathione and melatonin) with anti-aging and stem cell protection properties in the in vitro passaging, and the cell functions including stem cell senescence, cell migration, cell multidirectional differentiation potential, and ROS content were carefully analyzed.
Results
We found that GSH and melatonin could maintain ADSC cell functions through reducing cell senescence and promoting cell migration, as well as by preserving stemness and multidirectional differentiation potential, through inhibiting ROS generation during long-term expansion of ADSCs.
Conclusions
Our results suggested that antioxidant treatment could efficiently prevent the dysfunction and preserve cell functions of ADSCs after long-term passaging, providing a practical strategy to facilitate ADSC-based therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.