The strong antibacterial, antiviral and anticancer activities demonstrated by quinolones make them promising lead structures and important synthetic targets for drug discovery. Here, we report, to the best of our knowledge, the first scalable total synthesis of antiviral (+)-aniduquinolone A, possessing a 3,4-dioxygenated 5-hydroxy-4-aryl-quinolin-2(1H)-one skeleton. This synthetic strategy explores E-stereoselective Horner–Wadsworth–Emmons (HWE) olefination as the key step to assemble isopropenyl substituted tetrahydrofuran onto the 3,4-dioxygenated 5-hydroxy-4-aryl-quinolin-2(1H)-one core, which is built by highly diastereoselective intramolecular aldol reaction. Moreover, two sets of stereoisomers of aniduquinolone A with substantially overlapping NMR data were synthesized completely and assigned unambiguously by comprehensive analysis of both their spectroscopic and X-ray diffraction data. Unexpectedly, aflaquinolones A, C, and D that feature different 2,4-dimethyl cyclohexanone moieties were transformed successfully from (+)-aniduquinolone A by treating with TFA. The methodology delineated herein can be applied broadly to the synthesis of natural alkaloids containing the core structure of 3,4-dioxygenated 5-hydroxy-4-aryl-quinolin-2(1H)-one.
Based on the goals of sustainability and environmentally conscious science, great progress has been made in the field of green chemical synthesis, but a synthesis that combines high levels of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.