Enhancing nutrient use efficiency (NUE) with minimal threat to environment has become critical for our agriculture food production systems (FPS) to sustain the burgeoning population. Nanotechnology with nanoscale inputs for production of nano agri-inputs (NAIPs) has emerged as an innovative solution for addressing issue of low or declining nutrient use efficiency (NUE) with minimal environment footprint. Nanotechnology is a promising field of research which has the potential to offer sustainable solutions to ever pressing challenges confronting our modern intensive agriculture. Nanotechnology employs nanomaterials which typically have small size (1–100 nm) which imparts unique characteristics and benefits. In addition to numerous other benefits, large surface area to volume ratio offers opportunity for better and effective interaction of nanoparticles to target sites. Nano-fertilizers hold potential to fulfil plant nutrition requirements along with imparting sustainability to crop production systems and that too without compromising the crops yield. Indian Farmers Fertilizer Cooperative Limited (IFFCO) - the farmers’ own fertilizer cooperative has been in the forefront for promotion of agro-technologies and novel agri-inputs to mitigate problems faced by the farmers. It has indigenously innovated at its Nano Biotechnology Research Centre (NBRC) at Kalol, Gujarat and succeeded in R& D and manufacturing of proprietary nano-fertilizers viz. nano urea, nano zinc, and nano copper. These nano-fertilizers utilize the dynamics of shape, size, surface area and bio-assimilation. There efficacy was evaluated on the basis of multi-location multi-crop trials under varying crop seasons, both by the research institutes and also on the progressive farmers’ fields across 11,000 locations on 94 crops across India. Independently, nano nitrogen, nano zinc, and nano copper have also been tested for bio-efficacy- bio safety- toxicity and environment suitability. IFFCO nano-fertilizers meet alll the current national and international guidelines related to nano technology or nano scale agri-inputs.They are in sync with OECD testing guidelines (TGs) and “Guidelines for Testing of NAIPs and Food Products” released by the Department of Biotechnology, Government of India. Harvested produce of crops applied with IFFCO nano-Urea, nano-zinc, and nano-copper have been found fit for consumption with no adverse effect. This paper reviews the benefits of nanofertilizers (Nano N, Nano Zn and Nano Cu) towards increasing nutrient use efficiency and crop productivity and produce quality in general and the journey of IFFCO nano-fertilizers (IFFCO’s Nano Urea, Nano Zn and Nano Cu) from conception to PILOT to PLANT stage has also been covered in this paper.
A microwave-assisted highly efficient intermolecular CÀH functionalization sequence has been developed to access substituted isoquinolones using a-amino acid esters as a directing group. This methodology enables a wide range of N-benzoyl a-amino ester derivatives to react via a Ru-catalysed CÀH bond activation sequence, to form isoquinolones with moderate to excellent yields. As an additional advantage, our strategy proved to be widely applicable and also enabled the reaction of alkenes to provide access to alkenylated benzamides. The methodology was also extended towards the synthesis of isoquinoline alkaloids derivatives viz. oxyavicine and a dipeptide. The developed protocol is simple and cheap, avoids tedious workup procedures and works efficiently under MW irradiation.
A microwave-assisted highly efficient intermolecular domino carbopalladation/C-H functionalization sequence has been developed to access bis-heteroaryl frameworks in a single operation. The reaction involves carbopalladation of the halogenated acrylamides or phenylpropiolamides by the Pd(0) catalysis, followed by the direct (hetero)arylation to give products with good to excellent yields. The synthetic utility of this method was also extended towards the application of the Ugi-adduct as the starting material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.