Vitex rotundifolia is an important coastal and medicinal plant, and is recorded in the List of the Important Wild Plants for Conservation in China and Japan. However, an effective conservation strategy is lacking. In the present study, the genetic diversity and population structure were analyzed using phylogeographical methods based on the trnH-psbA and trnG-trnS intergenic spacers of the chloroplast DNA (cpDNA) sequences from 157 individuals from 25 sampling sites for V. rotundifolia and V. trifolia plus the internal transcribed spacer (ITS) of the nuclear ribosomal DNA (nrDNA) sequences of 177 individuals from 27 sampling sites. The results showed that V. rotundifolia and V. trifolia had eight cpDNA and two nrDNA haplotypes, respectively, and the V. rotundifolia has a low level of genetic diversity (haplotype diversity hd,cp = 0.360, hd,nr = 0.440), a more pronounced genetic differentiation among populations (population differentiation at the species level (GST) = 0.201, population differentiation at the allele level (NST) = 0.462), and an insignificantly different phylogeographical structure (NST > GST, P > 0.05). In addition, haplotype network analyses indicated that V. rotundifolia and V. trifolia have distinct haplotypes. Divergence dating based on BEAST software analyses showed that most cpDNA clades diverged in the late Pleistocene era. Demographic analysis indicated that V. rotundifolia underwent a rapid demographic expansion. Some scientific strategies are suggested for resource conservation of V. rotundifolia based on its genetic diversity and population structure.
What is known and objective: MTX pharmacology and toxicity involve several metabolizing enzymes and transporters whose functions have been suggested to be altered by genetic polymorphisms. The current study is to investigate the relationship between the genetic variation and MTX-induced adverse drug effects.Methods: A total of 80 paediatric patients (aged 1-14 years) were enrolled in this study. Toxicity was assessed according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0 scoring system. Genotyping was performed by MassARRAY Assay method. Data were analysed using Spss statistical
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.