Malignant glioma is the most common intracranial tumor with poor prognosis. It is well believed that glioma stem cells (GSCs) are responsible for the initiation and progression of glioma. Janus kinase/signal transducer and activator of transcription (Jak/STAT3) pathway plays a key role in the functions of GSCs. However, the regulatory mechanism of Jak/STAT3 pathway has not been completely elucidated. This study employed multidisciplinary approaches to investigate the upstream regulators of Jak/STAT3 signaling in GSCs. miR-30 was found to be overexpressed in the GSCs derived from U-87 MG and primary glioma cells, compared with non-stem-cell-like glioma cells and normal cells. Downregulation of miR-30 was able to suppress Jak/STAT3 pathway and reduce the tumorigenecity of GSCs. miR-30 decreased the expression of suppressor of cytokine signaling 3 (SOCS3) expression by targeting 3'UTR of its mRNA. The silencing of SOCS3 abolished the effect of miR-30 downregulation on GSCs. Collectively, there is a regulatory pathway consisting of miR-30, SOCS3, and Jak/STAT3 in GSCs, and targeting this pathway may be a promising strategy to treat glioma.
Background: Traumatic brain injury (TBI) is considered a major burden across the globe affecting both individuals and their families. Therefore, the present study was conducted to determine the protective effect of diphenhydramine (DPM) against TBI in experimental rats. Methods: The effect of DPM was evaluated on the cerebral edema (CE) and neuronal degeneration after the induction of experimental brain injury in rats. The effect of DPM was also investigated on the inflammatory cytokines, for example, tumor necrosis factor-α and interleukin 1β and oxidative stress markers, such as malondialdehyde, superoxide dismutase, and glutathione peroxidase. Western blot analysis was used to investigate the effect of DPM on B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) and cleaved caspase-3. Results: Results of the study suggest that DPM causes reduction in CE and prevents neuronal degeneration. It also causes reduction in inflammation and oxidative stress in a dose-dependent manner. The level of Bax was found to be elevated, together with reduction in the Bcl-2 level in the DPM-treated group. Conclusion: DPM exerts a neuroprotective effect after TBI via the attenuation of oxidative stress, inflammation, and mitochondrial apoptosis pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.