This paper studies the tracking control problem for an uncertain n -link robot with full-state constraints. The rigid robotic manipulator is described as a multiinput and multioutput system. Adaptive neural network (NN) control for the robotic system with full-state constraints is designed. In the control design, the adaptive NNs are adopted to handle system uncertainties and disturbances. The Moore-Penrose inverse term is employed in order to prevent the violation of the full-state constraints. A barrier Lyapunov function is used to guarantee the uniform ultimate boundedness of the closed-loop system. The control performance of the closed-loop system is guaranteed by appropriately choosing the design parameters. Simulation studies are performed to illustrate the effectiveness of the proposed control.
In this paper, we consider the trajectory tracking of a marine surface vessel in the presence of output constraints and uncertainties. An asymmetric barrier Lyapunov function is employed to cope with the output constraints. To handle the system uncertainties, we apply adaptive neural networks to approximate the unknown model parameters of a vessel. Both full state feedback control and output feedback control are proposed in this paper. The state feedback control law is designed by using the Moore-Penrose pseudoinverse in case that all states are known, and the output feedback control is designed using a high-gain observer. Under the proposed method the controller is able to achieve the constrained output. Meanwhile, the signals of the closed loop system are semiglobally uniformly bounded. Finally, numerical simulations are carried out to verify the feasibility of the proposed controller.
This paper considers the infinite horizon optimal control of logical control networks, including Boolean control networks as a special case. Using the framework of game theory, the optimal control problem is formulated. In the sight of the algebraic form of a logical control network, its cycles can be calculated algebraically. Then the optimal control is revealed over a certain cycle. When the games, using memory 1 (which means the players only consider previous steps' action at each step), are considered, the higher order logical control network is introduced and its algebraic form is also presented, which corresponds to a conventional logical control network (i.e.,
= 1). Then it isproved that the optimization technique developed for conventional logical control networks is also applicable to this -memory case.Index Terms-Boolean network, cycle, higher order logical control network, logical control network, optimal control.
This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position. The barrier Lyapunov function is employed to guarantee that the joint constraints are not violated, in which the Moore-Penrose pseudo-inverse term is used in the control design. To handle the unmodeled dynamics, the neural network (NN) is adopted to approximate the uncertain dynamics. The NN control based on full-state feedback for robots is proposed when all states of the closed loop are known. Subsequently, only the robot joint is measurable in practice; output feedback control is designed with a high-gain observer to estimate unmeasurable states. Through the Lyapunov stability analysis, system stability is achieved with the proposed control, and the system output achieves convergence without violation of the joint constraints. Simulation is conducted to approve the feasibility and superiority of the proposed NN control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.