Background: Hemifacial microsomia (HFM) is a type of rare congenital syndrome caused by developmental disorders of the first and second pharyngeal arches that occurs in one out of 5,600 live births. There are significant gaps in our knowledge of the pathogenic genes underlying this syndrome. Methods: Whole exome sequencing (WES) was performed on five patients, one asymptomatic carrier, and two marry-in members of a five-generation pedigree. Structure of WARP (product of VWA1) was predicted using the Phyre2 web portal. In situ hybridization and vwa1-knockdown/knockout studies in zebrafish using morpholino and CRISPR/Cas9 techniques were performed. Cartilage staining and immunofluorescence were carried out. Results: Through WES and a set of filtration, we identified a c.G905A:p.R302Q point mutation in a novel candidate pathogenic gene, VWA1. The Phyre2 web portal predicted alterations in secondary and tertiary structures of WARP, indicating changes in its function as well. Predictions of protein-to-protein interactions in five pathways related to craniofacial development revealed possible interactions with four proteins in the FGF pathway. Knockdown/knockout studies of the zebrafish revealed deformities of pharyngeal cartilage. A decrease of the proliferation of cranial neural crest cells (CNCCs) and alteration of the structure of pharyngeal chondrocytes were observed in the morphants as well.
Background Treacher Collins syndrome (TCS, OMIM 154500) is an autosomal disorder of craniofacial development with an incidence rate of 1/50,000 live births. Although TCOF1 , POLR1D , and POLR1C , have been identified as the pathogenic genes for about 90% TCS patients, the pathogenic variants of about 8–11% cases remain unknown. The object of this study is to describe the molecular basis of 14 clinically diagnosed TCS patients from four families using Whole-exome sequencing (WES) followed by Sanger sequencing confirmation, and to analyze the effect of bone conduction hearing rehabilitation in TCS patients with bilateral conductive hearing loss. Results Four previously unreported heterozygous pathogenic variants (c.3047-2A > G, c.2478 + 5G > A, c.489delC, c.648delC) were identified in the TCOF1 gene, one in each of the four families. Sanger sequencing in family members confirmed co-segregation of the identified TCOF1 variants with the phenotype. The mean pure-tone threshold improvements measured 3 months after hearing intervention were 28.8 dB for soft-band BAHA, 36.6 ± 2.0 dB for Ponto implantation, and 27.5 dB SPL for Bonebridge implantation. The mean speech discrimination improvements measured 3 months after hearing intervention in a sound field with a presentation level of 65 dB SPL were 44%, 51.25 ± 5.06, and 58%, respectively. All six patients undergoing hearing rehabilitation in this study got a satisfied hearing improvement. Conclusions WES combined with Sanger sequencing enables the molecular diagnosis of TCS and may detect other unknown causative genes. Bone conduction hearing rehabilitation may be an optimal option for TCS patients with bilateral conductive hearing loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.