Background β-Nicotinamide mononucleotide (NMN) is the direct precursor of nicotinamide coenzymes such as NAD+ and NADP+, which are widely applied in industrial biocatalysis especially involving cofactor-dependent oxidoreductases. Moreover, NMN is a promising candidate for medical uses since it is considered to be beneficial for improving health of aged people who usually suffer from an insufficient level of NAD+. To date, various methods have been developed for the synthesis of NMN. Chemical phosphorylation of nicotinamide riboside (NR) to NMN depends on excessive phosphine oxychloride and delicate temperature control, while fermentation of NMN is limited by low product titers, making it unsuitable for industrial-scale NMN production. As a result, the more efficient synthesis process of NMN is still challenging. Aim This work attempted to construct an eco-friendly and cost-effective biocatalytic process for transforming the chemically synthesized NR into the highly value-added NMN. Results A new nicotinamide riboside kinase (Klm-NRK) was identified from Kluyveromyces marxianus. The specific activity of purified Klm-NRK was 7.9 U·mg–1 protein, ranking the highest record among the reported NRKs. The optimal pH of Klm-NRK was 7.0 in potassium phosphate buffer. The purified Klm-NRK retained a half activity after 7.29 h at 50 °C. The catalytic efficiencies (kcat/KM) toward ATP and nicotinamide riboside (NR) were 57.4 s−1·mM−1 and 84.4 s−1·mM−1, respectively. In the presence of an external ATP regeneration system (AcK/AcP), as much as 100 g·L–1 of NR could be completely phosphorylated to NMN in 8 h with Klm-NRK, achieving a molar isolation yield of 84.2% and a space–time yield of 281 g·L−1·day−1. These inspiring results indicated that Klm-NRK is a promising biocatalyst which provides an efficient approach for the bio-manufacturing of NMN in a high titer. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.