Spasticity, a common symptom in patients with upper motor neuron lesions, reduces the ability of a person to freely move their limbs by generating unwanted reflexes. Spasticity can interfere with rehabilitation programs and cause pain, muscle atrophy and musculoskeletal deformities. Despite its prevalence, it is not commonly understood. Widely used clinical scores are neither accurate nor reliable for spasticity assessment and follow up of treatments. Advancement of wearable sensors, signal processing and robotic platforms have enabled new developments and modeling approaches to better quantify spasticity. In this paper, we review quantitative modeling techniques that have been used for evaluating spasticity. These models generate objective measures to assess spasticity and use different approaches, such as purely mechanical modeling, musculoskeletal and neurological modeling, and threshold control-based modeling. We compare their advantages and limitations and discuss the recommendations for future studies. Finally, we discuss the focus on treatment and rehabilitation and the need for further investigation in those directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.