Benzo [a]pyrene diol epoxide (BPDE), the active metabolite of benzo [a]pyrene present in tobacco smoke, is a major cancer-causing compound. To evaluate the effects of BPDE on human breast epithelial cells, we exposed an immortalized human breast cell line, MCF 10A, to BPDE and characterized the gene expression pattern. Of the differential genes expressed, we found consistent activation of DDX3, a member of the DEAD box RNA helicase family. Overexpression of DDX3 in MCF 10A cells induced an epithelial-mesenchymal-like transformation, exhibited increased motility and invasive properties, and formed colonies in soft-agar assays. Besides the altered phenotype, MCF 10A-DDX3 cells repressed E-cadherin expression as demonstrated by both immunoblots and by E-cadherin promoter-reporter assays. In addition, an in vivo association of DDX3 and the E-cadherin promoter was demonstrated by chromatin immunoprecipitation assays. Collectively, these results demonstrate that the activation of DDX3 by BPDE, can promote growth, proliferation and neoplastic transformation of breast epithelial cells.
Aggressive cancer phenotypes are a manifestation of many different genetic alterations that promote rapid proliferation and metastasis. In this study, we show that stable overexpression of Twist in a breast cancer cell line, MCF-7, altered its morphology to a fibroblastic-like phenotype, which exhibited protein markers representative of a mesenchymal transformation. In addition, it was observed that MCF-7/Twist cells had increased vascular endothelial growth factor (VEGF) synthesis when compared with empty vector control cells. The functional changes induced by VEGF in vivo were analyzed by functional magnetic resonance imaging (MRI) of MCF-7/Twistxenografted tumors. MRI showed that MCF-7/Twist tumors exhibited higher vascular volume and vascular permeability in vivo than the MCF-7/vector control xenografts. Moreover, elevated expression of Twist in breast tumor samples obtained from patients correlated strongly with high-grade invasive carcinomas and with chromosome instability, particularly gains of chromosomes 1 and 7. Taken together, these results show that Twist overexpression in breast cancer cells can induce angiogenesis, correlates with chromosomal instability, and promotes an epithelial-mesenchymal-like transition that is pivotal for the transformation into an aggressive breast cancer phenotype. (Cancer Res 2005; 65(23): 10801-9)
BackgroundThe CD44 transmembrane glycoproteins play multifaceted roles in tumor progression and metastasis. CD44 expression has also been associated with stem-like breast cancer cells. Hypoxia commonly occurs in tumors and is a major cause of radiation and chemo-resistance. Hypoxia is known to inhibit differentiation and facilitates invasion and metastasis. Here we have investigated the effect of hypoxia on CD44 and two of its isoforms in MDA-MB-231 and SUM-149 triple negative human breast cancer cells and MDA-MB-231 tumors using imaging and molecular characterization.Methods and FindingsThe roles of hypoxia and hypoxia inducible factor (HIF) in regulating the expression of CD44 and its variant isoforms (CD44v6, CD44v7/8) were investigated in human breast cancer cells, by quantitative real-time polymerase chain reaction (qRT-PCR) to determine mRNA levels, and fluorescence associated cell sorting (FACS) to determine cell surface expression of CD44, under normoxic and hypoxic conditions. In vivo imaging studies with tumor xenografts derived from MDA-MD-231 cells engineered to express tdTomato red fluorescence protein under regulation of hypoxia response elements identified co-localization between hypoxic fluorescent regions and increased concentration of 125I-radiolabeled CD44 antibody.ConclusionsOur data identified HIF-1α as a regulator of CD44 that increased the number of CD44 molecules and the percentage of CD44 positive cells expressing variant exons v6 and v7/8 in breast cancer cells under hypoxic conditions. Data from these cell studies were further supported by in vivo observations that hypoxic tumor regions contained cells with a higher concentration of CD44 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.