The hepatotoxin cylindrospermopsin (CYN) produced by certain cyanobacteria, including Aphanizomenon ovalisporum (hereafter Aphanizomenon) [1], seriously affects lake water quality [2], but its biological role is not known. Strong correlation between Aphanizomenon abundance in Lake Kinneret, Israel, and alkaline phosphatase (APase) activity suggests that inorganic phosphate (Pi) limitation induces the PHO regulon and APase secretion [3]. Staining lake samples with DAPI [4] revealed a high level of polyphosphate bodies (PPB) in Aphanizomenon. Application of enzyme-labeled fluorescence (ELF-APase) [5] showed APase in various organisms, but not in Aphanizomenon. ELF-APase signals and extracellular APase activity in Aphanizomenon were detected only after exploiting PPB under prolonged Pi deprivation in cultures or toward the end of its autumn bloom. Pi deprivation of Aphanizomenon induces CYN production, high-affinity Pi uptake, and an internal, not external, APase. Addition of Aphanizomenon spent media or CYN to various phytoplanktons, including Chlamydomonas reinhardtii, induced genes typically upregulated under Pi limitation and a rise in extracellular APase activity, despite ample surrounding Pi. Coculturing Aphanizomenon with Chlamydomonas or with Debarya sp. showed positive ELF-APase signals, but not in Aphanizomenon. CYN producers promote Pi supply by inducing APase secretion by other phytoplanktons, possibly explaining their increased abundance despite reduced Pi supply from watersheds.
Exposure to β-N-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson’s disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of various analytical methods currently employed is rarely compared. A CYANOCOST initiated workshop was organized aimed at training scientists in BMAA analysis, creating mutual understanding and paving the way towards interlaboratory comparison exercises. During this workshop, we tested different methods (extraction followed by derivatization and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, or directly followed by LC-MS/MS analysis) for trueness and intermediate precision. We adapted three workup methods for the underivatized analysis of animal, brain and cyanobacterial samples. Based on recovery of the internal standard D3BMAA, the underivatized methods were accurate (mean recovery 80%) and precise (mean relative standard deviation 10%), except for the cyanobacterium Leptolyngbya. However, total BMAA concentrations in the positive controls (cycad seeds) showed higher variation (relative standard deviation 21%–32%), implying that D3BMAA was not a good indicator for the release of BMAA from bound forms. Significant losses occurred during workup for the derivatized method, resulting in low recovery (<10%). Most BMAA was found in a trichloroacetic acid soluble, bound form and we recommend including this fraction during analysis.
Akinetes are spore-like non-motile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Here, we demonstrate variations in cellular ultrastructure during akinete formation concomitant with accumulation of cyanophycin; a copolymer of aspartate and arginine that forms storage granules. Cyanophycin accumulation is initiated in vegetative cells few days post-exposure to akinete inducing conditions. This early accumulated cyanophycin pool in vegetative cells disappears as a nearby cell differentiates to an akinete and stores large pool of cyanophycin. During the akinete maturation, the cyanophycin pool is further increased and comprise up to 2% of the akinete volume. The cellular pattern of photosynthetic activity during akinete formation was studied by a nano-metric scale secondary ion mass spectrometry (NanoSIMS) analysis in 13C-enriched cultures. Quantitative estimation of carbon assimilation in vegetative cells and akinetes (filament-attached and -free) indicates that vegetative cells maintain their basal activity while differentiating akinetes gradually reduce their activity. Mature-free akinetes practically lost their photosynthetic activity although small fraction of free akinetes were still photosynthetically active. Additional 13C pulse-chase experiments indicated rapid carbon turnover during akinete formation and de novo synthesis of cyanophycin in vegetative cells 4 days post-induction of akinete differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.