Mounting effective innate and adaptive immune responses are critical for viral clearance and the generation of long lasting immunity. It is known that production of inhibitory factors may result in the inability of the host to clear viruses, resulting in chronic viral persistence. Fibrinogen-like protein 2 (FGL2) has been identified as a novel effector molecule of CD4+CD25+ Foxp3+ regulatory T (Treg) cells that inhibits immune activity by binding to FCγRIIB expressed primarily on antigen presenting cells (APC). In this study, we show that infection of mice with Lymphocytic Choriomeningitis Virus WE (LCMV WE) leads to increased plasma levels of FGL2, which were detected as early as 2 days post-infection (pi) and persisted until day 50 pi. Mice deficient in FGL2 (fgl2−/−) had increased viral titers of LCMV WE in the liver early p.i but cleared the virus by day 12 similar to wild type mice. Dendritic cells (DC) isolated from the spleens of LCMV WE infected fgl2−/− had increased expression of the DC maturation markers CD80 and MHC Class II compared to wild type (fgl2+/+). Frequencies of CD8+ and CD4+ T cells producing IFNγ in response to ex vivo peptide re-stimulation isolated from the spleen and lymph nodes were also increased in LCMV WE infected fgl2 −/− mice. Increased frequencies of CD8+ T cells specific for LCMV tetramers GP33 and NP396 were detected within the liver of fgl2−/− mice. Plasma from fgl2−/− mice contained higher titers of total and neutralizing anti-LCMV antibody. Enhanced anti-viral immunity in fgl2−/− mice was associated with increased levels of serum alanine transaminase (ALT), hepatic necrosis and inflammation following LCMV WE infection. These data demonstrate that targeting FGL2 leads to early increased viral replication but enhanced anti-viral adaptive T & B cell responses. Targeting FGL2 may enhance the efficacy of current anti-viral therapies for hepatotropic viruses.
Persistent viruses evade immune detection by interfering with virus-specific innate and adaptive antiviral immune responses. Fibrinogen-like protein-2 (FGL2) is a potent effector molecule of CD4 CD25 FoxP3 regulatory T cells and exerts its immunosuppressive activity following ligation to its cognate receptor, FcγRIIB/RIII. The role of FGL2 in the pathogenesis of chronic viral infection caused by lymphocytic choriomeningitis virus clone-13 (LCMV cl-13) was assessed in this study. Chronically infected fgl2 mice had increased plasma levels of FGL2, with reduced expression of the maturation markers, CD80, CD86 and MHC-II on macrophages and dendritic cells and impaired production of neutralizing antibody. In contrast, fgl2 mice or fgl2 mice that had been pre-treated with antibodies to FGL2 and FcγRIIB/RIII and then infected with LCMV cl-13 developed a robust CD4 and CD8 antiviral T-cell response, produced high titred neutralizing antibody to LCMV and cleared LCMV. Treatment of mice with established chronic infection with antibodies to FGL2 and FcγRIIB/RIII was shown to rescue the number and functionality of virus-specific CD4 and CD8 T cells with reduced total and virus-specific T-cell expression of programmed cell death protein 1 leading to viral clearance. These results demonstrate an important role for FGL2 in viral immune evasion and provide a rationale to target FGL2 to treat patients with chronic viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.