In this report, a novel type of photoresponsive liquid crystalline polymer with a block mesogenic side‐group is demonstrated. The block mesogene is an amphipathic molecule containing a hydrophobic mesogene (azotolane moiety) and hydrophilic oligooxyethylene moieties in the same unit. The block mesogene in the polymer plays a role in liquid crystalline, amphiphilic and photoresponsive properties. As expected, a film prepared from the polymer exhibits phase separation of a lamellar structure due to cooperative motion between liquid crystal assembly and nanophase separation. The morphology of the lamellae can be aligned upon irradiation of linearly polarized light. Moreover, a photochemical phase transition induced by unpolarized UV irradiation erases the surface morphology. The erased nanostructure can be recovered by annealing or irradiation of linearly polarized light, meaning that the surface morphology is rewritable via a photochemical process.
Unless otherwise noted, all commercial reagents were used as received. 1 H and 13 C NMR spectra were recorded in CDCl 3 with a JNM ECP-500 spectrometer. Chemical shifts of 1 H and 13 C NMR signals were quoted to internal standard CDCl 3 (δ = 7.24 and 77.0) and listed as chemical shifts in ppm (δ). High-resolution mass spectra were obtained with a JMS-SX102A spectrometer with fast atom
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.