<span id="docs-internal-guid-4db59d91-7fff-c659-478a-6dd7456f380f"><span>Breast cancer is an abnormal cell growth in the breast that keeps changed uncontrolled and it forms a tumor. The tumor can be benign or malignant. Benign could not be dangerous to health and cancerous, but malignant could be has a probability dangerous to health and be cancerous. A specialist doctor will diagnose the patient and give treatment based on the diagnosis which is benign or malignant. Machine learning offer times efficiency to determine a cancer cell. The machine will learn the pattern based on the information from the dataset. Support vector machines and linear discriminant analysis are common methods that can be used in the classification of cancer. In this study, both of linear discriminant analysis and support vector machines are compared by looking from accuracy, sensitivity, specificity, and F1-score. We will know which methods are better in classifying breast cancer dataset. The result shows that the support vector machine has better performance than the linear discriminant analysis. It can be seen from the accuracy is 98.77%.</span></span>
Nowadays, machine learning technology is needed in the medical field. therefore, this research is useful for solving problems in the medical field by using machine learning. Many cases of colorectal cancer are diagnosed late. When colorectal cancer is detected, the cancer is usually well developed. Machine learning is an approach that is part of artificial intelligence and can detect colorectal cancer early. This study discusses colorectal cancer detection using twin support vector machine (SVM) method and kernel function i.e. linear kernels, polynomial kernels, RBF kernels, and gaussian kernels. By comparing the accuracy and running time, then we will know which method is better in classifying the colorectal cancer dataset that we get from Al-Islam Hospital, Bandung, Indonesia. The results showed that polynomial kernels has better accuracy and running time. It can be seen with a maximum accuracy of twin SVM using polynomial kernels 86% and 0.502 seconds running time.
Machine learning is one of the technologies used in medicine. Machine learning can help detect various kinds of problems in the medical field and enables a process to be faster and more efficient. Cancer is one of the most dangerous diseases in the world. Machine learning is widely used in bioinformatics and particularly in cancer diagnosis. One of the most popular methods is K-nearest neighbors (K-NN) and Neural Network. There are supervised learning methods. Using K-NN, the quality of the results depends largely on the distance and the value of the parameter “k” which represents the number of the nearest neighbors. This research is explains the classification of colorectal cancer by using K-NN with different k values and Neural Network Classification. Our work will be performed on the Colorectal Cancer dataset obtained by the Al-Islam Hospital, Bandung, Indonesia and it consists of benign cases 163 and malignant cases 47 samples. Thus, the final result indicates better performance for K-nearest neighbors’ accuracy is 0.786 in K-parameter equal to 7, 9, 11 has the same accuracy with 60% data training and Neural Network reached 0.904 with 90% of data training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.