When a scheduling environment is static and system attributes are deterministic, a manufacturing schedule can be obtained by applying analytical tools such as mathematical modelling technology, dynamic programming, the branchand-bound method or other developed searching algorithms. Unfortunately, a scheduling environment is usually dynamic in a real manufacturing world. A production system may vary with time and require production managers to change schedule repeatedly. Therefore, the main aim here was to find a scheduling method that could reduce the need for rescheduling. An approach called Functional Virtual Population was proposed as assistance to learn robust scheduling knowledge for manufacturing systems under rationally changing environments. The used techniques include machine learning with artificial neural networks and IF-THEN scheduling rules. To illustrate the study in detail, a simulated flexible manufacturing system consisting of four machines, four parts, one automatic guided vehicle and eight buffers was built as the foundation for learning the concept. Also, Pythia software (a back-propagation-based neural networks) was employed as the learning tool in the learning procedure.
In recent years, generative adversarial networks (GANs) have been proposed to generate simulated images, and some works of literature have applied GAN to the analysis of numerical data in many fields, such as the prediction of building energy consumption and the prediction and identification of liver cancer stages. However, these studies are based on sufficient data volume. In the current era of globalization, the demand for rapid decision-making is increasing, but the data available in a short period of time is scarce. As a result, machine learning may not provide precise results. Obtaining more information from a small number of samples has become an important issue. Therefore, this study aimed to modify the generative adversarial network structure for learning with small numerical datasets, starting with the Wasserstein GAN (WGAN) as the GAN architecture, and using mega-trend-diffusion (MTD) to limit the bound of virtual samples that the GAN generates. The model verification of our proposed structure was conducted with two datasets in the UC Irvine Machine Learning Repository, and the performance was evaluated using three criteria: accuracy, standard deviation, and p-value. The experiment result shows that, using this improved GAN architecture (WGAN_MTD), small sample data can also be used to generate virtual samples that are similar to real samples through GAN.
Thin Film Transistor-Liquid Crystal Displays (TFT-LCDs) are widely used in TVs, monitors, and PDAs.The key process of producing a TFT-LCD is using alignment to combine a Thin Film Transistor (TFT) panel with a Color Filter (CF) panel, which is called "celling". The defined cell vernier, which indicates the alignment error, is an important quality index in the manufacturing process. In the CF manufacturing process, the cell vernier is difficult to control because it depends on six TPEs (Total Pitch Errors), with each TPE highly dependent on the others. This paper aims to improve the cell vernier forecasting model with the six TPE attributes to enhance the production yield in the CF manufacturing process. Using the six dependent variables, this study found that the SVR (Support Vector Machine for Regression) model is the fittest for generating quality results that meet the designed specifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.