Motivated by grasp planning applications within cluttered environments, this paper presents a novel approach to performing real-time surface segmentations of never-before-seen objects scattered across a given scene. This approach utilizes an input 2D depth map, where a first principles-based algorithm is utilized to exploit the fact that continuous surfaces are bounded by contours of high gradient. From these regions, the associated object surfaces can be isolated and further adapted for grasp planning. This paper also provides details for extracting the six-DOF pose for an isolated surface and presents the case of leveraging such a pose to execute planar grasping to achieve both force and torque closure. As a consequence of the highly parallel software implementation, the algorithm is shown to outperform prior approaches across all notable metrics and is also shown to be invariant to object rotation, scale, orientation relative to other objects, clutter, and varying degree of noise. This allows for a robust set of operations that could be applied to many areas of robotics research. The algorithm is faster than real time in the sense that it is nearly two times faster than the sensor rate of 30 fps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.