Segmentation of pancreas is important for medical image analysis, yet it faces great challenges of class imbalance, background distractions and non-rigid geometrical features. To address these difficulties, we introduce a Deep Q Network(DQN) driven approach with deformable U-Net to accurately segment the pancreas by explicitly interacting with contextual information and extract anisotropic features from pancreas. The DQN based model learns a context-adaptive localization policy to produce a visually tightened and precise localization bounding box of the pancreas. Furthermore, deformable U-Net captures geometryaware information of pancreas by learning geometrically deformable filters for feature extraction. Experiments on NIH dataset validate the effectiveness of the proposed framework in pancreas segmentation.
An unsolved challenge in distributed or federated learning is to effectively mitigate privacy risks without slowing down training or reducing accuracy. In this paper, we propose Tex-tHide aiming at addressing this challenge for natural language understanding tasks. It requires all participants to add a simple encryption step to prevent an eavesdropping attacker from recovering private text data. Such an encryption step is efficient and only affects the task performance slightly. In addition, Tex-tHide fits well with the popular framework of fine-tuning pre-trained language models (e.g., BERT) for any sentence or sentence-pair task. We evaluate TextHide on the GLUE benchmark, and our experiments show that TextHide can effectively defend attacks on shared gradients or representations and the averaged accuracy reduction is only 1.9%. We also present an analysis of the security of TextHide using a conjecture about the computational intractability of a mathematical problem. 1
Emerging magnetic resonance (MR) guided radiotherapy affords significantly improved anatomy visualization and, subsequently, more effective personalized treatment. The new therapy paradigm imposes significant demands on radiation dose calculation quality and speed, creating an unmet need for the acceleration of Monte Carlo (MC) dose calculation. Existing deep learning approaches to denoise the final plan MC dose fail to achieve the accuracy and speed requirements of large-scale beamlet dose calculation in the presence of a strong magnetic field for online adaptive radiotherapy planning. Our deep learning dose calculation method, DeepMC, addresses these needs by predicting low-noise dose from extremely noisy (but fast) MC-simulated dose and anatomical inputs, thus enabling significant acceleration. DeepMC simultaneously reduces MC sampling noise and predicts corrupted dose buildup at tissue-air material interfaces resulting from MR-field induced electron return effects. Here we demonstrate our model’s ability to accelerate dose calculation for daily treatment planning by a factor of 38 over traditional low-noise MC simulation with clinically meaningful accuracy in deliverable dose and treatment delivery parameters. As a post-processing approach, DeepMC provides compounded acceleration of large-scale dose calculation when used alongside established MC acceleration techniques in variance reduction and graphics processing unit-based MC simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.