Keyphrase extraction is widely used in information retrieval, automatic summarizing, text clustering, etc. KEA is a traditional and classical algorithm. But it mainly uses the statistical information and ignores the semantic information. In our paper, we propose a method which combine semantic information with KEA by constructing lexical chain that based on Reget's thesaurus. In this method, we use the semantic similarity between terms to construct lexical chain, and then the length of the chain will be used as a feature to build the extraction model. The experiment results attest that the performance of our system has an obvious improvement compare with the KEA and Nguyen and Kan's method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.