Recognizing text from natural images is a hot research topic in computer vision due to its various applications. Despite the enduring research of several decades on optical character recognition (OCR), recognizing texts from natural images is still a challenging task. This is because scene texts are often in irregular (e.g. curved, arbitrarilyoriented or seriously distorted) arrangements, which have not yet been well addressed in the literature. Existing methods on text recognition mainly work with regular (horizontal and frontal) texts and cannot be trivially generalized to handle irregular texts. In this paper, we develop the arbitrary orientation network (AON) to directly capture the deep features of irregular texts, which are combined into an attention-based decoder to generate character sequence. The whole network can be trained end-to-end by using only images and word-level annotations. Extensive experiments on various benchmarks, including the CUTE80, SVT-Perspective, IIIT5k, SVT and ICDAR datasets, show that the proposed AON-based method achieves the-state-of-theart performance in irregular datasets, and is comparable to major existing methods in regular datasets.2. We design a filter gate (FG) for fusing four-direction features with the learned placement clues. That is, FG is responsible for generating the integrated feature sequence.3. We integrate AON, FG and an attention-based decoder into the character recognition framework. The whole network can be directly trained end-to-end without any character-level bounding box annotations.4. We conduct extensive experiments on several public irregular and regular text benchmarks, which show that our method obtains state-of-the-art performance in irregular benchmarks, and is comparable to major existing methods in regular benchmarks.
In this paper, we present a model pretraining technique, named MaskOCR, for text recognition. Our text recognition architecture is an encoder-decoder transformer: the encoder extracts the patch-level representations, and the decoder recognizes the text from the representations. Our approach pretrains both the encoder and the decoder in a sequential manner. (i) We pretrain the encoder in a self-supervised manner over a large set of unlabeled real text images. We adopt the masked image modeling approach, which shows the effectiveness for general images, expecting that the representations take on semantics. (ii) We pretrain the decoder over a large set of synthesized text images in a supervised manner and enhance the language modeling capability of the decoder by randomly masking some text image patches occupied by characters input to the encoder and accordingly the representations input to the decoder. Experiments show that the proposed MaskOCR approach achieves superior results on the benchmark datasets, including Chinese and English text images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.