An improved tentacle-based bank-angle transient method that requires less computation and provides effective feedback is proposed to offer a new choice for reentry gliding hypersonic vehicle maneuvering guidance. The longitudinal guidance strategy of hypersonic vehicles is applied to track standard trajectories, and the improved tentacle-based bank angle transient lateral strategy avoids static or dynamic no-fly zones. The proposed lateral strategy generates three tentacles for detection, addresses numerical heading angle limitations or no-fly zone constraints, and provides control commands through a time-counting filter. Dispersed cases are verified for static no-fly zones, and a warning area is proposed to avoid dynamic no-fly zones. For dynamic no-fly zones, the velocity and initial position of the no-fly zone are discussed in terms of the impact on the guidance. Finally, the guidance strategy is tested on a high-performance Common Aero Vehicle model in many flights, and all results for the constraints and computation time indicate that the improved tentacle-based guidance method is effective for avoiding no-fly zones where some information is unknown. INDEX TERMS Tentacle-based guidance, no-fly zone(NFZ), flight constraint, warning area, hypersonic vehicle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.