Three different radioactively labeled N-(1-methylcyclopropyl)benzylamines [N-(1-Me)CBA] were synthesized and used to show which atoms of the inactivator remain bound to monoamine oxidase (MAO) after inactivation. Organic chemical reactions were employed to elucidate the structure of the enzyme adduct and clarify the mechanism of inactivation. Following inactivation and dialysis, the benzyl substituent is lost, but the methyl group and cyclopropyl carbons remain attached to the enzyme even after further dialysis against solutions containing 1 mM benzylamine or 8 M urea. Treatment of inactivated enzyme with sodium cyanoborohydride prior to dialysis results in the retention of the benzyl group, suggesting an imine linkage. One hydride from sodium boro[3H]hydride is incorporated into the dialyzed inactivated enzyme consistent with a ketone functional group. When Pronase-digested N-(1-Me)CBA-inactivated MAO is treated with basic potassium triiodide, iodoform is isolated, indicating the presence of a methyl ketone. During inactivation, the optical spectrum of the covalently bound active site flavin changes from that of oxidized to reduced flavin. After urea denaturation, the flavin remains reduced, suggesting covalent linkage of the inactivator to the cofactor. On the basis of previous results [Silverman, R. B., Hoffman, S. J., & Catus, W. B., III (1980) J. Am. Chem. Soc. 102, 7126-7128], it is proposed that the mechanism of inactivation involves transfer of one electron from N-(1-Me)CBA to the flavin, resulting in an amine radical cation and a flavin radical. Then, either the cyclopropyl ring is attacked by the flavin radical or the cyclopropyl ring opens, and the radical generated is captured by the flavin radical. The product of this mechanism is the imine of benzylamine and 4-flavinyl-2-butanone, the proposed enzyme-inactivator adduct.
The effect of 18 different amines, two mercaptans, and two alcohols on the reactivation of N-cyclopropylbenzylamine- (N-CBA-) inactivated bovine liver monoamine oxidase (MAO) is described. All of the compounds that reactivate the enzyme produce a time-dependent pseudo-first-order return of enzyme activity and exhibit saturation kinetics. There is no direct correlation between the ability of a compound to serve as a substrate for native MAO and its ability to reactivate N-CBA-inactivated MAO. Amines containing an aromatic moiety, in general, are better reactivators than the aliphatic amines. The amine must be primary or secondary in order for reactivation to occur. The distance between the aromatic portion and the amino group is critical to the reactivation properties of the compound. The mercaptans and alcohols do not reactivate N-CBA-inactivated MAO, nor do they interfere with the reactivation reaction by benzylamine. Three mechanisms for the reactivation reaction are considered. One involves initial Schiff base formation with the active site adduct produced by N-CBA inactivation of MAO followed by base-catalyzed beta-elimination to the imine of acrolein. The second mechanism is the same as the first except no prior Schiff base formation is invoked. The third mechanism is an SN2 displacement by the amine of the active site amino acid residue attached to the adduct. Experiments are carried out to exclude the SN2 mechanism. The results of the reactivation experiments favor the Shiff base mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.