Wheel polygonal wear has long been a problem that confused the safety of railway operation which has important theoretical value and research significance. In this paper, the conditions of polygonal wear of high-speed wheel are analyzed based on the wear model and verified by the field measured data. Considering the wheel track interaction caused by rotation, a finite element model of wheelset rotor dynamics is established. The effects of rotor speed, mass eccentricity, wheelset, and track flexibility on the vibration characteristics of wheelset rotor system and wheel polygonal wear characteristics are analyzed by beam element and solid element, respectively. The results show that the wheel longitudinal vibration is the main reason of wheel polygonal wear, and the wheel polygonal wear follows the law of “constant frequency and divisible.” Its “constant frequency” comes from the wheel track contact vibration, which stimulates the third-order vertical bending vibration of wheelset and the eighth-order coupled bending vibration of track, and the order is equal to the ratio of “constant frequency” to the wheelset rotation frequency.
Wheel polygon wear has emerged as a critical issue in the development of high-speed trains in China, but the mechanism underlying its formation remains unknown. The formation mechanism and its effect factors of wheel polygonalization are investigated in depth in this paper using theoretical analysis and numerical simulation. A longitudinal self-excited vibration and vertical modal vibration coupling model of wheel-rail is established, considering the comprehensive effects of wheelset flexibility, vehicle spring mass, and foundation under rail. The critical condition of the system Hopf bifurcation is determined by theoretical analysis, and the longitudinal vibration characteristics of the wheel are studied using numerical simulation. Furthermore, the influence factors on wheel polygonalization are investigated. The research method makes a useful attempt to unify the relevant viewpoints of resonance theory and self-excited vibration theory, and the research results have theoretical guiding significance and engineering reference value for the prediction and suppression of wheel polygonal wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.