Among the various methods so far proposed for genetic network inference, this study focuses on the random-forest-based methods. Confidence values are assigned to all of the candidate regulations when taking the random-forest-based approach. To our knowledge, all of the random-forest-based methods make the assignments using the standard variable importance measure defined in tree-based machine learning techniques. Therefore, the sum of the confidence values of the candidate regulations of a certain gene from the other genes, that are computed from a single random forest, is always restricted to a value of almost 1. We think that this feature is inconvenient for the genetic network inference that requires to compare the confidence values computed from multiple random forests. In this study we therefore propose an alternative measure, what we call ``the random-input variable importance measure,'' and design a new inference method that uses the proposed measure in place of the standard measure in the existing random-forest-based inference method. We show, through numerical experiments, that the use of the random-input variable importance measure improves the performance of the existing random-forest-based inference method by as much as 45.5% with respect to the area under the recall-precision curve (AURPC).
Background: Among the various methods so far proposed for genetic network inference, this study focuses on the random-forest-based methods. Confidence values are assigned to all of the candidate regulations when taking the random-forest-based approach. To our knowledge, all of the random-forest-based methods make the assignments using the standard variable importance measure defined in tree-based machine learning techniques. We think however that this measure has drawbacks in the inference of genetic networks. Results: In this study we therefore propose an alternative measure, what we call ``the random-input variable importance measure,'' and design a new inference method that uses the proposed measure in place of the standard measure in the existing random-forest-based inference method. We show, through numerical experiments, that the use of the random-input variable importance measure improves the performance of the existing random-forest-based inference method by as much as 45.5% with respect to the area under the recall-precision curve (AURPC). Conclusion: This study proposed the random-input variable importance measure for the inference of genetic networks. The use of our measure improved the performance of the random-forest-based inference method. In this study, we checked the performance of the proposed measure only on several genetic network inference problems. However, the experimental results suggest that the proposed measure will work well in other applications of random forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.