BackgroundRecent studies suggest that BRCA2 affects telomere maintenance. Interestingly, anti cancer treatments that involve BRCA2 and telomerase individually are currently being explored. In the light of the above recent studies their combinatorial targeting may be justified in the development of future treatments. In order to investigate effects of BRCA2 that can be explored for this combinatorial targeting we focused on the analysis of recombination rates at telomeres by monitoring T-SCEs (Telomere Sister Chromatid Exchanges).ResultsWe observed a significant increase in T-SCE frequencies in four BRCA2 defective human cell lines thus suggesting that BRCA2 suppresses recombination at telomeres. To test this hypothesis further we analyzed T-SCE frequencies in a set of Chinese hamster cell lines with or without functional BRCA2. Our results indicate that introduction of functional BRCA2 normalizes frequencies of T-SCEs thus supporting the notion that BRCA2 suppresses recombination at telomeres. Given that ALT (Alternative Lengthening of Telomeres) positive cells maintain telomeres by recombination we investigated the effect of BRCA2 depletion in these cells. Our results show that this depletion causes a dramatic reduction in T-SCE frequencies in ALT positive cells, but not in non-ALT cells.ConclusionBRCA2 suppresses recombination at telomeres in cells that maintain them by conventional mechanisms. Furthermore, BRCA2 depletion in ALT positive cells reduces high levels of T-SCEs normally found in these cells. Our results could be potentially important for refining telomerase-based anti-cancer therapies.
BackgroundTelomeres, the physical ends of chromosomes, play an important role in preserving genomic integrity. This protection is supported by telomere binding proteins collectively known as the shelterin complex. The shelterin complex protects chromosome ends by suppressing DNA damage response and acting as a regulator of telomere length maintenance by telomerase, an enzyme that elongates telomeres. Telomere dysfunction manifests in different forms including chromosomal end-to-end fusion, telomere shortening and p53-dependent apoptosis and/or senescence. An important shelterin-associated protein with critical role in telomere protection in human and mouse cells is the catalytic subunit of DNA-protein kinase (DNA-PKcs). DNA-PKcs deficiency in mouse cells results in elevated levels of spontaneous telomeric fusion, a marker of telomere dysfunction, but does not cause telomere length shortening. Similarly, inhibition of DNA-PKcs with chemical inhibitor, IC86621, prevents chromosomal end protection through mechanism reminiscent of dominant-negative reduction in DNA-PKcs activity.ResultsWe demonstrate here that the IC86621 mediated inhibition of DNA-PKcs in two mouse lymphoma cell lines results not only in elevated frequencies of chromosome end-to-end fusions, but also accelerated telomere shortening in the presence of telomerase. Furthermore, we observed increased levels of spontaneous telomeric fusions in Artemis defective human primary fibroblasts in which DNA-PKcs was inhibited, but no significant changes in telomere length.ConclusionThese results confirm that DNA-PKcs plays an active role in chromosome end protection in mouse and human cells. Furthermore, it appears that DNA-PKcs is also involved in telomere length regulation, independently of telomerase activity, in mouse lymphoma cells but not in human cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.