In this paper, we used the database of the university of Michigan Radio Astronomy Observatory (UMRAO) at three (4.8 GHz, 8.0 GHZ, and 14.5 GHz) radio frequency to analyze the radio light curves by the power spectral analysis method in search of possible periodicity. The analysis results showed that the radio sources display astrophysically meaningful periodicity ranging from 2.2 to 20.8 years in their light curves at the three frequencies. We also calculated the variability parameters and investigated the correlations between the variability parameter and the flux density. For the variability parameters, we found that the parameters at higher frequency are higher than those in the lower frequency. In addition, the variability parameters of BL Lacertae objects are larger than those of flat-spectrum radio quasars. suggesting that they are more variable than flat spectrum radio quasars.
Our aim is to measure the interstellar 14N/15N ratio across the Galaxy, to establish a standard data set on interstellar ammonia isotope ratios, and to provide new constraints on the Galactic chemical evolution. The (J, K) = (1, 1), (2, 2), and (3, 3) lines of 14NH3 and 15NH3 were observed with the Shanghai Tianma 65 m radio telescope (TMRT) and the Effelsberg 100 m telescope toward a large sample of 210 sources. One hundred fourty-one of these sources were detected by the TMRT in 14NH3. Eight of them were also detected in 15NH3. For 10 of the 36 sources with strong NH3 emission, the Effelsberg 100 m telescope successfully detected their 15NH3(1, 1) lines, including 3 sources (G081.7522, W51D, and Orion-KL) with detections by the TMRT telescope. Thus, a total of 15 sources are detected in both the 14NH3 and 15NH3 lines. Line and physical parameters for these 15 sources are derived, including optical depths, rotation and kinetic temperatures, and total column densities. 14N/15N isotope ratios were determined from the 14NH3/15NH3 abundance ratios. The isotope ratios obtained from both telescopes agree for a given source within the uncertainties, and no dependence on heliocentric distance and kinetic temperature is seen. 14N/15N ratios tend to increase with galactocentric distance, confirming a radial nitrogen isotope gradient. This is consistent with results from recent Galactic chemical model calculations, including the impact of superasymptotic giant branch stars and novae.
Context. Isotope abundance ratios provide a powerful tool for tracing stellar nucleosynthesis, evaluating the composition of stellar ejecta, and constraining the chemical evolution of the Milky Way. Aims. We aim to measure the 12C/13C, 32S/34S, 32S/33S, 32S/36S, 34S/33S, 34S/36S, and 33S/36S isotope ratios across the Milky Way. Methods. With the IRAM 30 meter telescope, we performed observations of the J = 2−1 transitions of CS, C33S, C34S, C36S, 13CS, 13C33S, and 13C34S as well as the J = 3−2 transitions of C33S, C34S, C36S, and 13CS toward a large sample of 110 high-mass star-forming regions. Results. We measured the 12C/13C, 32S/34S, 32S/33S, 32S/36S, 34S/33S, 34S/36S, and 33S/36S abundance ratios with rare isotopologs of CS, thus avoiding significant saturation effects. With accurate distances obtained from parallax data, we confirm previously identified 12C/13C and 32S/34S gradients as a function of galactocentric distance. In the central molecular zone, 12C/13C ratios are higher than suggested by a linear fit to the disk values as a function of galactocentric radius. While 32S/34S ratios near the Galactic center and in the inner disk are similar, this is not the case for 12C/13C, when comparing central values with those near galactocentric radii of 5 kpc. As was already known, there is no 34S/33S gradient but the average ratio of 4.35 ± 0.44 derived from the J = 2−1 transition lines of C34S and C33S is well below previously reported values. A comparison between solar and local interstellar 32S/34S and 34S/33S ratios suggests that the Solar System may have been formed from gas with a particularly high 34S abundance. For the first time, we report positive gradients of 32S/33S, 34S/36S, 33S/36S, and 32S/36S in our Galaxy. The predicted 12C/13C ratios from the latest Galactic chemical-evolution models are in good agreement with our results. While 32S/34S and 32S/36S ratios show larger differences at larger galactocentric distances, 32S/33S ratios show an offset across the entire inner 12 kpc of the Milky Way.
To investigate the relative amount of ejecta from high-mass versus intermediate-mass stars and to trace the chemical evolution of the Galaxy, we have performed with the IRAM 30 m and the SMT 10 m telescopes a systematic study of Galactic interstellar 18 O/ 17 O ratios toward a sample of 421 molecular clouds, covering a galactocentric distance range of ∼1 -22 kpc. The results presented in this paper are based on the J=2-1 transition and encompass 364 sources showing both C 18 O and C 17 O detections. The previously suggested 18 O/ 17 O gradient is confirmed. For the 41 sources detected with both facilities, good agreement is obtained. A correlation of 18 O/ 17 O ratios with heliocentric distance is not found, indicating that beam dilution and linear beam sizes are not relevant. For the subsample of IRAM 30 m high-mass star-forming regions with accurate parallax distances, an unweighted fit gives 18 O/ 17 O = (0.12 ± 0.02)R GC + (2.38 ± 0.13) with a correlation coefficient of R = 0.67. While the slope is consistent with our J=1-0 measurement, ratios are systematically lower. This should be caused by larger optical depths of C 18 O 2-1 lines, w.r.t the corresponding 1-0 transitions, which is supported by RADEX calculations and the fact that C 18 O/C 17 O is positively correlated with 13 CO/C 18 O. After considering optical depth effects with C 18 O J=2-1 reaching typically an optical depth of ∼0.5, corrected 18 O/ 17 O ratios from the J=1-0 and J=2-1 lines become consistent. A good numerical fit to the data is provided by the MWG-12 model, including both rotating stars and novae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.