This paper reports on the growth of Cr-doped GaN layers by metal organic vapor phase epitaxy (MOVPE) and their characterization for possible spintronic applications. We have used bis (cyclopentadienyl)chromium (Cp 2 Cr) to intentionally incorporate chromium (Cr) during GaN layer growth. The effects of the carrier gas, hardware setup, and growth temperature on the growth of Cr-doped GaN were investigated. A linear dependence between mole fraction of Cp 2 Cr in the gas phase and incorporated Cr in the solid phase was found. The surface morphology was mostly influenced by carrier gas and growth temperature. A remanent magnetization was observed even above room temperature.
The phase transformation of NdFeB melt-spun alloys with low Nd content of 4–8 at. % was investigated by thermomagnetic analysis and x-ray diffractometry. Experimental results have shown that the metastable Nd2Fe23B3 compound formed in the alloys is considered to be transformed to Nd2Fe23B3+α-Fe+Fe3B in the temperature range of 550–690 °C, α-Fe+Fe3B+Nd1+eFe4B4 in the temperature range of 690–730 °C and finally α-Fe+Nd1+eFe4B4 above 840 °C. From the results, it has been concluded that Nd2Fe14B is not formed from metastable Nd2Fe23B3. On the other hand, the melt-spun alloy of Nd2Fe23B3 (∼Nd7.1Fe82.1B10.7) annealed under optimum conditions has been found to be composed of α-Fe, Fe3B, and Nd2Fe14B phases. The alloy has a coercivity comparable to Fe3B-based Nd4Fe77B19 and relatively high-energy product of about 71.6 kJ/m3 (∼9 MG Oe).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.