Strong mitigation of edge-localized modes has been observed on Experimental Advanced Superconducting Tokamak, when lower hybrid waves (LHWs) are applied to H-mode plasmas with ion cyclotron resonant heating. This has been demonstrated to be due to the formation of helical current filaments flowing along field lines in the scrape-off layer induced by LHW. This leads to the splitting of the outer divertor strike points during LHWs similar to previous observations with resonant magnetic perturbations. The change in the magnetic topology has been qualitatively modeled by considering helical current filaments in a field-line-tracing code.
[1] Multiple magnetic cloud (Multi-MC), which is formed by the overtaking of successive coronal mass ejections (CMEs), is a kind of complex structure in interplanetary space. Multi-MC is worthy of notice due to its special properties and potential geoeffectiveness. Using the data from the ACE spacecraft, we identify the three cases of Multi-MC in the period from March to April 2001. Some observational signatures of Multi-MC are concluded: (1) Multi-MC only consists of several magnetic clouds and interacting regions between them; (2) each subcloud in Multi-MC is primarily satisfied with the criteria of isolated magnetic cloud, except that the proton temperature is not as low as that in typical magnetic cloud due to the compression between the subclouds; (3) the speed of solar wind at the rear part of the front subcloud does not continuously decrease, rather increases because of the overtaking of the following subcloud; (4) inside the interacting region between the subclouds, the magnetic field becomes less regular and its strength decreases obviously, and (5) b value increases to a high level in the interacting region. We find out that two of three Multi-MCs are associated with the great geomagnetic storms (Dst À200 nT), which indicate a close relationship between the Multi-MCs and some intense geomagnetic storms. The observational results imply that theMulti-MC is possibly another type of the interplanetary origin of the large geomagnetic storm, though not all of them have geoeffectiveness. Based on the observations from Solar and Heliospheric Observatory (SOHO) and GOES, the solar sources (CMEs) of these Multi-MCs are identified. We suggest that such successive halo CMEs are not required to be originated from a single solar region. Furthermore, the relationship between Multi-MC and complex ejecta is analyzed, and some similarities and differences between them are discussed.
In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s −1 . The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About two hours before the eruption, indications for a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.
[1] In the event that occurred during October 3 -6, 2000, at least one magnetosonic wave and one fast forward shock advanced into the preceding magnetic cloud (MC). By using the field and plasma data from the ACE and WIND spacecraft, we analyze the evolution of this event, including the characteristics and changes of the magnetic fields and plasma. At the rear part of the cloud, a large southward magnetic field is caused by a shock compression. The shock intensified a preexisting southward magnetic field. This increased the geoeffectiveness of this event and produced an intense geomagnetic storm with Dst = À175 nT. We also describe another event with a shock overtaking a MC on Nov. 6, 2001. A great geomagnetic storm of intensity Dst = 292 nT resulted. These observations are used to argue that shock compression of magnetic cloud fields is an important interplanetary cause of large geomagnetic storms. Our analyses suggest that the geoeffectiveness is related to the direction of preexisting magnetic fields, the intensity of overtaking shock, and the amount of shock penetration into the preceding MC.
Turbulence in the pedestal region of the EAST tokamak has been observed and studied using reflectometry. In lower hybrid wave (LHW) or neutral beam injection (NBI) dominated heating plasma, a coherent mode (CM) was usually observed in the ELM-free phase just after the L-H transition. The CM rotated in the electron diamagnetic drift (EDD) direction in the laboratory frame with a poloidal wave number (k θ ) of 0.5 cm −1 -0.7 cm −1 and its frequency usually chirped from 80 -100 kHz down to 40 -50 kHz as the pedestal evolved. The appearance of this mode reduced the increasing rate of pedestal pressure, implying that the CM may have an effect on outward pedestal transport. This mode can exist every ten milliseconds and is finally replaced by broadband (BB) fluctuation in the later ELM-free phase. It was found that the appearance and disappearance of the CM was correlated to the pedestal pressure. In the inter-ELM phase, the pedestal turbulence is generally dominated by BB fluctuation with poloidal wave numbers from 0 to 3 cm −1 rotating in the EDD direction in the laboratory frame. Analysis shows that the pedestal pressure increasing rate dp e, ped /dt decreases with the amplitude of the BB fluctuation, implying that the BB fluctuation may play an important role in pedestal evolution. The preliminary observation on the fluctuation just inside the pedestal top is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.