Background. Flower and fruit development are vital stages of the angiosperm lifecycle. We previously investigated the multi-silique trait in the rapeseed (Brassica napus) line zws-ms on a genomic and transcriptomic level, leading to the identification of two genomic regions and several candidate genes associated with this trait. However, some events on transcriptome level, like alternative splicing, were poorly understood. Methods. Plants from zws-ms and its near-isogenic line (NIL) zws-217 were both grown in Xindu with normal conditions and a colder area Ma'erkang. Buds from the two lines were sampled and RNA was isolated to perform the transcriptomic sequencing. The numbers and types of alternative splicing (AS) events from the two lines were counted and classified. Genes with AS events and expressed differentially between the two lines, as well as genes with AS events which occurred in only one line were emphasized. Their annotations were further studied. Results. From the plants in Xindu District, an average of 205,496 AS events, which could be sorted into 5 AS types, were identified. zws-ms and zws-217 shared highly similar ratios of each AS type: The alternative 5' and 3' splice site types were the most common, while the exon skipping type was observed least often. Eleven differentially expressed AS genes were identified, of which four were upregulated and seven were downregulated in zws-ms. Their annotations implied that five of these genes were directly associated with the multi-silique trait. While samples from colder area Ma'erkang generated generally reduced number of each type of AS events except the Intron Retention; but the number of differentially expressed AS genes increased significantly. Further analysis found that among the 11 differentially expressed AS genes from Xindu, three of them maintained the same expression models, while the other 8 genes did not show significant difference between the two lines in expression level. Additionally, the 205 line-specifically expressed AS genes were analyzed, of which 187 could be annotated, and two were considered to be important. Discussion. This study provides new insights into the molecular mechanism of the agronomically important multi-silique trait in rapeseed on transcriptome level and screens out some environmentresponding candidate genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.