In the big data era, the document classification became an active research area due to the explosive nature in the volumes of data. Document Indexing is one of the important tasks under text classification. The objective of this research is to increase the performance of the document indexing by proposing Adam optimizer in the auto-encoder. Due to the larger dimension and multi-class classification problem, the accuracy of document indexing is reduced. In this paper, an enhanced auto encoder is used based on the objective function of the Adam optimization (AEAO), which improves the learning rate and accuracy of indexing. The documents from the 20-newsgroup data set are converted into vector representation, and then the cosine similarity and Pearson correlation have been measured from the vector. The word to vector representation has words in the vector form and the frequency of words in the document increases their value. The Adam optimization technique selects the features by using similarity values and improves the learning rate. The auto encoder classifier classifies the document based on the objective function of the Adam optimizer. The experiment is conducted using python and the result infers that the classification performance of AEAO is better than that of Similarity-based classification framework for Multiple-Instance Learning and Self-Adaptive LSH encoding for multi-instance Learning techniques in terms of parameters like precision, recall and fscore
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.